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PROFESSOR:

AUDIENCE:

PROFESSOR:

Another strange observation about mirrors that I've never really understood-- the
mirror plane is reflecting me left to right, so it looks as though a mirror has a grain to
it. It knows what line to reflect me back and forth. But if | kept the mirror in fixed
orientation and | lay down, the thing should reflect me side to side, but it doesn't. It

still reflects me from top to bottom.

So how can that be? Why does a mirror plane, if | hold it in one orientation, appear
to have a direction across which I'm reflected but it doesn't follow me if | move?

Know what | mean? You have any explanation of that? Hmm?

Rotate your eyes, too.

Rotate my eyes. | can roll them around. | can't rotate in any other fashion.

That's strange. | mean, you look at yourself every morning-- several times, perhaps,
and you're reflected always left to right. And if you turn the mirror, it doesn't reflect
you top to bottom. Or conversely, you can leave the mirror alone and you can-- why
does a mirror plane just reflect you left to right? Ah. I'll let you stew about that one

for a while.

And I can tell you that | know of three papers in scientific journals that tried to
explain this. | can give you literature citations, but you think about it until our next

meeting. Why does it know which way I'm oriented? Ah, | can't think about it.

Alright, back to more straightforward questions. We are now about to embark on a
grand process of synthesis which will take us the better part of half a semester. And
we've identified our four basic operations-- four basic one step operations-- namely
translation, reflection, rotation, and for the time being I'm going to look just at two-
dimensional symmetries, so I'll leave inversion out of the picture. It's only defined in
three dimensions, and the logic which | will follow will be to first build up two-
dimensional symmetries and then we'll turn them into three-dimensional symmetries

by picking another translation that's not coplanar with the first two.



So we're going to look for the time being at just two-dimensional symmetries. The
nice thing about doing this is that the number of two-dimensional symmetries is
relatively small, so we can derive them rigorously and exhaustively. To do so in
three dimensions is a much more time consuming and elaborate exercise. It's no
different in principle, there's just more work. So if we do two-dimensional
symmetries first, it's an easy case. We can do it rigorously and completely, and then
what we'll do is just look at a few examples in three dimensions and look at how the

results are designated and tabulated.

So the first combination | will choose to make is one that | set up last time and
should not have started when there was no time to finish it. So let me take an
initially pristine space and say that to this I'm going to the operation of translation.
That immediately implies a string of translations and a string of lattice points, but I'm

just going to focus my attention on the first one.

Then what | said I'll do is add to the space a rotation operation A alpha. I'm going to
for convenience put it right at the lattice point, but as there is no unique origin to the

translation, | can start and stop the translation anywhere | like.

So here's my translation. The rotation operation is going to take that translation and
repeat it at angular intervals alpha so that | get a radiating porcupine-like sheaf of
translations all coming out of a common point. Alpha, we observed, has to be a
submultiple of 2 pi, so | will have a cluster of translations separated by the equal
interval alpha-- angular interval alpha-- and I'm going to choose to focus my
attention on just the first one. So this, since it's repeated by rotation, has the same

length T.

And then I'm going to look at the other end of the translation and say that similarly |
must have a set of equally spaced angular-wise translations all separated by alpha,
and I'm going to choose to focus my attention just on this one. So this angle is

alpha, and this angle here is alpha.

And now there's big trouble in River City. This is a translation, here's a lattice point,

here's a lattice point. This is a translation-- a lattice point sits up here. This is a



translation-- a lattice points sits up here. Now I've got two lattice points eyeball to
eyeball, and they jolly well better be separated by either the interval T or some
multiple P times T, where P is some integer. It would be quite all right if there were
two translation separation or five translation separation, but it must be some
multiple of translation or | have violated my initial premise that everything in this

space is periodic at a translational interval T.

So let me take this geometrical constraint and very quickly convert it into analytical
form so that we can proceed to systematically find out what the possibilities are. Let
me drop a perpendicular down to the original translation. So this distance in here is
PT, this distance will be T times the cosine of alpha, and this distance in here will be
T times the cosine of alpha. So in analytic form, then, | can say that my original
translation T is equal to T cosine of alpha plus T cosine of alpha. That's 2T cosine

of alpha plus PT.

And the first thing we can see is that the magnitude of T drops out because this
construction and the constraint it embodies in no way depends on the magnitude of
the translation. So this says, then, that 1 is equal to 2 cosine of alpha plus the
integer P. And if | solve for the value of cosine of alpha, cosine of alpha will be 1
minus an integer P divided by 2. So there is the constraint that must be followed if

my construction is to be self-consistent.

So we've got this now in a plug and chug situation. So what I'm going to put down is
the value of P, taking all possible integers for which a value of cosine of alpha
exists. I'm then going to evaluate cosine of alpha, which is 1 minus P over 2, and
then I'm going to identify the n-fold axis that corresponds to that particular value of

alpha.

Let's put in P equals 3, and this is as far as we got last time. Well, if we put 4, then

cosine of alpha is minus 3/2-- it's not defined. If we drop P down to 3, then cosine of
alpha is minus 1, 1 minus 3 over 2. And the angle whose cosine is minus 1 is a-- let
me put down the value of alpha and then the n-fold axis. The angle whose cosine is

minus 1 is 180 degrees, and that would describe quite nicely the rotational throw of
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a twofold axis.

If I let P drop down to the value 2, then | have minus 1/2 of the cosine of alpha. The
angle whose cosine is minus 1/2 is 120 degrees. And guess what? That's the
angular throw of a threefold axis. Let P drop down to 1, and then cosine of alpha is

0. The angle whose cosine is 0 is 90 degrees, and that would be a fourfold axis.

Looks like we're done, except P could be equal to 0. In that case, cosine of alpha is
plus 1/2. The angle whose cosine is plus 1/2 is equal to 60 degrees, and that's a
sixfold access. What about negative integers? Minus one, will that work? This says
that cosine of alpha is 1, and the angle whose cosine is one is 0 degrees or 360
degrees. And that would be no rotational symmetry all. It's rather amusing that the

trivial case of no symmetry at all also falls out of this construction.

So this is a momentous result. We've shown that if you're going to have a pattern
that has a repetition by translation in it, the number of rotational symmetries that
can be added are either no symmetry at all, a twofold rotational symmetry,
threefold, fourfold, or sixfold. In other words, the axis-- no symmetry at all, twofold,

threefold, fourfold, or sixfold, nothing else.

This tells you a lot about the shapes that you can see macroscopically on crystals.
You could have a crystal that had the shape of the trigonal prism, and that would be
perfectly fine. You could have a crystal that had the shape of an orthogonal brick
that would have twofold axes coming out of the faces. You could have a crystal in
the shape of a hexagonal present, or you could have a crystal in the shape of the
square prism. But something thing like a crystal with a pentagonal cross section that
would be a fivefold access-- that is strictly forbidden, because the external shape of

the crystal has to reflect the internal symmetry among the arrangement of atoms.

There are lots of things in nature that have crystallographic symmetry. There is a
little cactus that looks like this with some little spines coming out like this on the top,
and its proper name is astrophytum myriostigma, also known as the ornamented
bishops cap. Beautiful example of fivefold symmetry, but the cells inside of that

cactus can not have the same size and shape and be repeated by translation.



There are flowers that have very common examples of fivefold and even sevenfold
symmetry. There's one little purple flower that looks like this that comes out in the
spring, and that's called periwinkle. Fivefold symmetry-- fine for a plant, but if you

got down inside the stem of this flower, the cells cannot be repeated by translation.

There are astronomically high symmetries. These big giant cacti in the Southwest,
the saguaro, they have rotational symmetries that run from 18-fold, 19-fold, 23-fold,
so that if you picked up one of these guys very carefully, because they're covered
with spines, and if you could lift it-- which would be very hard because they weigh a
couple of tons-- take that guy and rotate them through 1/27 of a circle, and if he had
27-fold symmetry, you could plop them down and you couldn't tell that it had been

moved.

There is no crystallographer who can resist cacti. All sorts of symmetry, even
symmetries that violate crystal graphic symmetries-- wonderful textures and colors.
And they have another really remarkable property, which commends them as house
plants. If they die, this sheath of spines stays intact until someday when you're
watering it, you brush against it and you poke a hole right through the spines and
there's nothing inside. So a house plant that dies and you can't tell for two years or

so is a very good plant to have as a companion.

So cacti have all sorts of strange symmetries. Fine, but you can say something

about the internal structure of that flower or that cactus.

But this little almost trivial proof has told us something else about crystals, because
the presence of translation imposes a constraint on the rotational symmetry that can
be present, and the rotational symmetry tells us something about the nature of the
two-dimensional lattice which can accommodate that symmetry. So let's go through

this list once more, and let's pay attention to the value of P.

For a twofold rotational symmetry, what we would do would be to take this original
translation, we put the twofold axis here, and that takes the translation and rotates it

around. So here's a lattice point here, one here, one here, and the twofold axis



here, takes the translation and we rotate in a counterclockwise sense. Here's
another lattice point here. P was equal to three translations, and I'll be darned if that

isn't exactly what we have.

Three translations from this lattice point A-- let me put some labels up here. This
was lattice point A, this was lattice point B, and this was our translation PT. Three

translations, just as advertised.

What constraint does this put on a lattice? None whatsoever, because all this says
is that if you have a translation that translation must be repeated into an extended
one-dimensional row. So you can put this an any 2D lattice whatsoever. In other
words, the magnitudes of the two translations-- let's call them T1 and T2 are under
no constraint to be related one to another-- and this angle between them, alpha,
can be anything that it likes. You could have a twofold axis, but that requires simply

a lattice row parallel to T1 and a lattice row parallel to T2.

The next integer we hit was minus 1/2. That was cosine of minus 1/2, this was P
equals 3, and that corresponded to something that could accept a threefold
symmetry. So let me put a guide to the I in here and make an equilateral triangle. If
we translate and rotate up by 120 degrees using a threefold axis and then rotate
minus 120 degrees about the other lattice point, that puts another translation up
here, and now-- I'm sorry, this was P equals 2 And as required, this is PT, and that's

equal to two translations.

This has put a constraint on the sort of lattice which can exist in this space because
we have two translations, T1 and T2, which are equal in magnitude, identical in
magnitude, because they're related by symmetry. And consequently, we have
defined a space lattice, a two-dimensional space lattice. We'll call this T1 and call
this T2. This lattice has the constraint that magnitude of T1 must be identical to the
magnitude of T2, and the angle between T1 and T2 is again identically 120
degrees. Not 119.9, but exactly 120 degrees because there is a threefold axis in

here that demands that that be so.

So this is a very specialized kind of lattice, restricted to have two translations



identical in magnitude. And if there's a threefold axis there, you should be able to
find these two. And if there's a threefold axis there, then the angle between these

two specialized translations is 120 degrees.

Our next magic integer was 1, and that corresponded to a fourfold axis. And if we
do what we claimed we did in that construction, we'd put a fold axis here. That takes
T1 and rotates it exactly 90 degrees to a translation T2. Once again, two
noncollinear translations, so we have defined a two-dimensional net. If we complete
the cell, this is one translation. PT is equal to one translation in here, and this angle

is 90 degrees because it's produced by a fourfold axis.

So we have a very special lattice. Again, the magnitudes of two translations are
identical-- not approximately the same, they're identical-- and the angle between

them is identically 90 degrees.

Only a couple to go. P could be equal to 0, and that was the case for a 60 degree
rotation, a sixfold axis. So again, let's draw what came out of this particular special
case. Here's T1, here is T2. This angle is 60 degrees exactly because there's a six-
fold rotation axis here, a sixfold rotation axis here, and the rotation of 60 in the
opposite sense gives us another translation here. These two lattice points coincide

and there is PT equal to 0T, and these two points coincide.

Now if | complete a standard unit cell with T1 T2 as I've done in other cases-- this
was T1, this was T2, this was a translation which I'm not going to use. So this is the
shape of the lattice and these now are lattice points with a sixfold axis on them. The
dimensional specialization is exactly the same as | found for a threefold axis, T1
identical to T2. If | pick this cell, T1 to T2 can be described as an angle of 120

degrees. Exactly the same lattice that we found for a threefold axis.

So with this simple minded little construction we've found two profound things-- that
there are five kinds of rotation axes, including the onefold no rotational symmetry at
all. And it turns out that there are one, a general lattice, a hexagonal lattice, and the
square lattice. There are three kinds of two-dimensional lattices that are required by

these symmetry elements.



AUDIENCE:

PROFESSOR:

So these guys require that there be three lattice of different specializations that are
able to accommodate them. So let me call this a parallelogram net, and that has T1
not equal to T2, the angle between T1 and T2 general. And this is a lattice that can
accommodate either no symmetry at all or a twofold rotation access. Then there
was a net that I'll call the hexagonal net, and this had T1 identical to T2 in
magnitude, and it had the angle between them, the angle between T1 and T2 as
identically 120 degrees. And this could accommodate either a threefold or a sixfold

axis.

And then finally, the general net, which I call a parallelogram net, and that has
magnitudes of the two translations not equal to one another. They can have any
values they like, and the angle between T1 and T2 is completely general. And that's
exactly what | had up here for the-- oh, we did that once already. The one that I'm

missing, the third one, is the square net.

Square net has T1 identical to T2. In magnitude, the angle between them is exactly

90 degrees, and that is required by a fourfold axis.

Let me pause here to see if there are any questions. Yes, sir.

When you write on the last one with the sixfold, it's only 120. You could have also

written 60, correct?

Yes, | could have. And this lattice is actually the same as what | found for a threefold
axis. | could pick either this or this as the cell, but the two translations in those two
cells are equal. And again at various stages along the way, we'll need a convention.
And if | have a net that looks like this, a parallelogram, whether a specialized

parallelogram or not, | have a choice of two angles that | could use.

We call that alpha. This is going to be 180 degrees minus alpha. Which do | pick?
You need a rule, and the rule is that for labeling the cell, pick alpha so that it's
greater or equal to 90 degrees. That's pure convention, but you want to have a rule
just like a language so people use the same words to describe the same thing. Here

we want to use the same geometry to describe one and the same thing.



AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

The other convention is that there are no unique translations that define a net. We
could take linear combinations of these vectors and define the same lattice, so we
need another rule for selecting the standard translations-- again, so that two people
can do an x-ray diffraction experiment and report the results in terms of the same
lattice, and this is a fairly reasonable thing. This is pick the two shortest translations,
and that clearly makes sense. There's absolutely nothing at all to commend a cell
that has this as T2 and this as T1 so you get a long, skinny oblique things. Your

natural inclination would pick the two shortest translations in the net.

OK, so these are conventions. This has nothing to do with the nature of the
symmetry or what makes it unique, but just so that people have one defined way of

labeling things.

Right. [INAUDIBLE] my question was actually that--

It was a good answer, even if was not to the question that you asked.

| said the sixfold and the threefold are exactly the same, but then | realized they are

because there is no crystal that can have threefold symmetry without sixfold.

You were doing fine. You should have quit just before that last statement. How can
you have a hexagonal lattice that sometimes has sixfold symmetry and sometimes

has threefold symmetry?

Well, let me give you an example for that, and it makes a very useful point. Let me
draw two hexagonal nets, and in this one I'll put a threefold axis. So I'll have one
motif here, I'll go 120 degrees away. Here is a motif here, and I'll go 120 degrees
away, and here is a third motif. So these three guys form a triangle about this lattice
point. And we would have about the other lattice points at the corners of the cell

exactly the same triangle of motifs, and the same thing over here.

So there is a pattern. It has a hexagonal lattice, and it has a triangle of objects
related by a threefold axis. And now let me take exactly the same lattice, and now I'll
put in instead a sixfold axis. And that means I'm going to have a hexagon of objects,
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AUDIENCE:

PROFESSOR:

and it'll do something like this.

And | don't want to push my luck and try to draw that twice, but there would be a
hexagon here and a hexagon of motifs here, another one at this lattice point, and
another one at this lattice point here. Same lattice, same shape, same dimensions--
although that's not critical-- but one of them has only a threefold axis. One of them
has only a sixfold axis in it. Why? Because | decided to put a threefold axis in this
pattern, and | decided to put a sixfold axis in this pattern, but they both end up being

contented and happy with a lattice with the same degree of specialization.

Now we will come as we progressed a little bit further that we have to go in two
dimensions to the reverse situation. We have a particular symmetry and it's happy
with two different sorts of lattices with different shapes and different specializations,

and that's going to come up directly. Any other questions? Yeah.

In this example, the sixfold [INAUDIBLE] axis [INAUDIBLE]. It's just that
[INAUDIBLE].

Yes. You're saying that here hanging at this lattice point is something that has
sixfold symmetry. Here is something has only threefold symmetry. The nature of the
lattice and the symmetry that is in that lattice are two inseparable aspects of the
pattern. But often, as we've seen here, there's more than one possibility for a given
lattice. And as we'll see very shortly, for some other symmetries, for one given

symmetry, there are two kinds of lattices.

But nevertheless, the thing to keep fixed in your mind is that we call this a
hexagonal lattice. Why? Because this translation is equal to this one, and they are
exactly 120 degrees apart. That lattice can have that specialness only if there's
either a threefold or a sixfold axis in it. So the specialization of a lattice is
inseparable from the symmetry that is in the lattice that demands that specialization

of the lattice.

Conversely, a lattice can have the specialization only if you place in a symmetry

which demands precisely that specialization. So if you measure a lattice, and this
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turns out to be 119.99 degrees and these turn out to be 3.21 angstroms and 3.21
angstroms, that is not a hexagonal lattice, because there's no symmetry in there

that demands that this angle be 120 degrees.

And that may seem to be an academic fine point, but we'll see that in due course
the properties of a crystal depend on the symmetry of that crystal. If the crystal has
symmetry, the property also has to have that symmetry. And it is the atoms inside
the cell which determine the symmetry of the property, and the properties is one
aspect of the symmetry that goes along with lattice dimensions and lattice angles. Is

that clear?

So let me say it again, because this is an important point. The specialness of a
lattice is inseparable from the symmetry that is existing in that lattice that demands
that specialness. So if you have a crystal with three orthogonal translations that is
equal in length as you might care to measure, that crystal is not cubic unless there's
symmetry in that lattice that demands that the edges of the cell conform to the

geometry of a cube. Any other questions?

Let's then in the time that's remaining look at the other symmetry element that could
be present in a two-dimensional crystal, and that's the mirror plane. So here's a
mirror plane. That's the one remaining symmetry element in two dimensions, and
let's ask how we might combine in this space along with the mirror plane a

translation.

If | just pop in a translation, and call this T1, and for convenience, I'll take the lattice
point on the mirror plane. Here's another lattice point that sits here. The mirror
plane acts on everything. It's going to take this lattice point and flip it over to here,
and it's going to take the translation that goes from the origin lattice point to this

lattice point and give me a T1 prime that sits here.

And now | have two non collinear translations, so these have defined for me a cell
that looks like this. This is T1, this is T2, and this is some angle alpha between
them. That's a special lattice. This is a lattice which has, just as in the hexagonal or
square net, two translations that are identical in magnitude.
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Why? Because they're repeated by a mirror plane, and the angle between them--
the angle between T1 and T2-- is completely general. It can be anything it likes. It
can close up to a very narrow angle or it can open up to an almost flat angle. That's

a new kind of lattice. None of the preceding lattices could make that claim.

Now let me point out that this is for the first time a case where it would be much to
our advantage to not choose a cell that contains one lattice point. Let me put some
dotted lines in here. And let me submit-- these will also be lattice points-- that | could
pick a larger cell that would have this as T1, it would have this as T2, and the angle
between them now would be identically 90 degrees because of the geometry that
gives us a rhombus here. This would have two translations that are not equal in
magnitude, and it would have an angle between these two translations that is
identically 90 degrees, but it is no longer a cell that contains one lattice point. It now

catches a second lattice point that's in the middle.

So this is a double cell, and it has a rectangular shape. It's a centered rectangular
lattice. Being a double cell that's redundant has twice the area that is unique in the
pattern, and anything that's hanging up here is going to be hanging down here, so it

has a twofold redundancy.

But the thing that you get in return for paying the price of that redundancy is a cell
that has a right angle in it. And as we'll see, we're going to use the edges of the unit
cell as the basis of a coordinate system for describing what goes on at positions xy
within the cell. And the advantages of an orthogonal coordinate system, whenever
you can take advantage of it, far outweighs the price of pain-- twice the area to

describe the same pattern.

So this is what is generally taken as the standard cell. It's a double cell. But | think
you're used to that sort of compromise, because you've all heard of face centered
cubic lattices. The primitive cell in a face centered cubic lattice is a rhombohedron.
But, oh, that Cartesian coordinate system is so great to use rather than something

that has an oblique coordinate system. So is this is a definition of convenience.
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Notice the curious duality-- either special relation between the translations angle
general or special relation between the translations, an angle special. General
translation, special angle, relation between the translation, general angle-- so, it's a

curious sort of duality. You can have one but not the other or vice versa.

So this is a fourth sort of lattice. Number one, number two, number three, and now
we have number four, which is a centered rectangular lattice. And this particular
lattice has T1 not equal to T2 in magnitude, but it has the angle between T1 and T2

exactly 90 degrees, and it's a double cell. It's centered.

Are we done? The reason | asked that silly rhetorical question is that obviously |

suspect that we're not done, and what else might we do?

We got our centered rectangular net by starting with a translation-- starting with an
mirror plane, really-- and then we added a general translation, and that reflected it
across and gave us a diamond shaped net which we could define as a rectangular
double shell. Does that always happen? Do | always get that oblique diamond

shaped cell? No.

Suppose | put in my first translation deliberately in a fashion such that it was at
exactly right angles to the mirror plane. That mirror plane will then reflect the
translation and change its direction, and now | have generated a one-dimensional
lattice row with translational periodicity T1. And I've got a translation that's exactly

perpendicular to the mirror plane.

How do | now make a space lattice, a two-dimensional space lattice? And the
answer is very carefully. Suppose | throw in a second translation T2 and the mirror
plane reflects it across to here. This interval between lattice points up here is totally
in commensurate with the first translation, and that won't work. It's violated my initial
choice of the translational periodicity unless | do one of two things, and let's try them

both and dispose of this quickly-- this is straight away.

Here's my one-dimensional lattice row. | do not violate this periodicity T1 if | do two

things. | could pick T2 so that it fell exactly along the mirror line, and that's going to
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generate for me a new type of lattice in which this is 90 degrees and these two
translations are unequal in length. So this is a lattice that has a rectangular shape.
It's a primitive rectangular cell, and it has T1 not equal to T2 in magnitude, and it

has T1 and T2 exactly 90 degrees apart.

The second choice that would not result in any contradiction would be to have this
as T1, and then pick T2 very carefully so that it spanned the mirror line with one half
of T1 exactly up here and one half of T1 exactly here. And this would be compatible
with the separation T1 down at the start of this translation. I think you can see that
what this is going to give me is the centered rectangular net right back again, so this

is the centered rectangular net-- nothing new.

But we did pick up one additional two-dimensional lattice of distinct character.
Number 5 is a primitive rectangular network, and it has the characteristics T1 is not
equal to T2 in magnitude. Just as in the centered rectangular net, T1 is at exactly

90 degrees to T2, but this is a primitive cell. And that's it.

We really set up the ground rules for the geometry of a periodic two-dimensional
space. There are five kinds of rotation axes-- one, two, three, four, and six. Each
one requires one or more of the specialized two-dimensional lattices. We have a
case where interestingly two different symmetries are compatible with a lattice of the
same specialization. In the case of the [? hexagon ?] on that, either three or sixfold
symmetry could require that. In the case of the mirror plane we have one symmetry

element, M, that can fit into two different kinds of lattices.

So in one case, the same lattice can take two different symmetries. In this case, two

different lattices can accommodate the same symmetry.

So that's the story for two dimensions, and we have just one final thing to do. That is
to add to the lattices that we have found, and there are five of them, and add to the
lattice point the symmetries that we have found require them. And there are a
limited number of these-- one, two, three, four, or sixfold rotational symmetry in a
mirror plane. And when we have finished these additions, we will end up with a
combination of lattice and symmetry, which is something that is called a plane
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group-- group because the operations that are present in the space follow the
requirements of the mathematical entity called a group, plane because this is a
distribution of symmetry elements throughout a plane and not just fixed at one

particular point.

Let me finish with some general observation, and we will obtain some of these rules
later on. Suppose | take a pristine space-- and this blackboard is no longer pristine--
and | put in the space a first operation, and there's a motif in there. This first

operation moves around this first motif and gives me a second one, number two.

Then | say let me put in another operation. I'd like to combine these things and see
how many different combinations | have, so | put in operation number two.
Operation number two will take the second object and repeat it to a third object.
Number two is identical to number one, so this gives me a third object reproduced

from the second by operation number two.

Now | have a space, and sitting in it are two different operations and three different
motifs. Motif number one and motif number three are the same darn thing because
they've been repeated by symmetry steps, so there must automatically be some
third transformation that is equal to the combined effect of going from one to two

and then from two to three-- going from one to three directly.

So this is another truth about these symmetries. Whenever you take two operations
and combine them in a space, the net effect of those two operations is equal to a
third operation. So a question we're going to ask all along the way until we are at
the end of the month-- if you take a translation and combine it with a mirror plane,
what new operation has to arise? If you take two rotation operations and put them
together, what third net operation has to arrive? If we have some general rules,
then we can automatically say, OK, I'm going to take a square lattice and I'm going
to put in a fourfold axis. What else is going to pop up elsewhere within the cell? We'll

be able to do this systematically but fairly automatically.

So that's where we're going from here. When we're done, we will have derived

systematically and rigorously the sorts of symmetries that can combine symmetries
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such as rotation and reflection with a lattice, and we will know completely the
different sorts of patterns that exist around us in two dimensions-- in floor tiles, brick

work, wrapping paper, and plaid shirts.

We'll pick up at this point on Thursday. Let me caution you we are going into
territory that is not covered in Berger's book. I've just passed it out to you. What
we've said in the early parts of the term are in there, but we're going to do things in

a slightly different way and then return to his text later on.
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