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Introduction 

Understanding of the stresses induced in beams by bending loads took many years to develop. 
Galileo worked on this problem, but the theory as we use it today is usually credited principally 
to the great mathematician Leonard Euler (1707–1783). As will be developed below, beams 
develop normal stresses in the lengthwise direction that vary from a maximum in tension at 
one surface, to zero at the beam’s midplane, to a maximum in compression at the opposite 
surface. Shear stresses are also induced, although these are often negligible in comparision 
with the normal stresses when the length-to-height ratio of the beam is large. The procedures 
for calculating these stresses for various loading conditions and beam cross-section shapes are 
perhaps the most important methods to be found in introductory Mechanics of Materials, and 
will be developed in the sections to follow. This theory requires that the user be able to construct 
shear and bending moment diagrams for the beam, as developed for instance in Module 12. 

Normal Stresses 

A beam subjected to a positive bending moment will tend to develop a concave-upward curva
ture. Intuitively, this means the material near the top of the beam is placed in compression along 
the x direction, with the lower region in tension. At the transition between the compressive and 
tensile regions, the stress becomes zero; this is the neutral axis of the beam. If the material 
tends to fail in tension, like chalk or glass, it will do so by crack initiation and growth from 
the lower tensile surface. If the material is strong in tension but weak in compression, it will 
fail at the top compressive surface; this might be observed in a piece of wood by a compressive 
buckling of the outer fibers. 
We seek an expression relating the magnitudes of these axial normal stresses to the shear 

and bending moment within the beam, analogously to the shear stresses induced in a circular 
shaft by torsion. In fact, the development of the needed relations follows exactly the same direct 
approach as that used for torsion: 

1.	 Geometrical statement: We begin by stating that originally transverse planes within the 
beam remain planar under bending, but rotate through an angle θ about points on the 
neutral axis as shown in Fig. 1. For small rotations, this angle is given approximately by 
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the x-derivative of the beam’s vertical deflection function v(x)1: 

u = −yv,x	 (1) 

where the comma indicates differentiation with respect to the indicated variable (v,x ≡ 
dv/dx). Here y is measured positive upward from the neutral axis, whose location within 
the beam has not yet been determined. 

Figure 1: Geometry of beam bending. 

2.	 Kinematic equation: The x-direction normal strain �x is then the gradient of the displace
ment: 

du 
�x = = −yv,xx	 (2)

dx 

Note that the strains are zero at the neutral axis where y = 0, negative (compressive) 
above the axis, and positive (tensile) below. They increase in magnitude linearly with y, 
much as the shear strains increased linearly with r in a torsionally loaded circular shaft. 
The quantity v,xx ≡ d2v/dx2 is the spatial rate of change of the slope of the beam deflection 
curve, the “slope of the slope.” This is called the curvature of the beam. 

3.	 Constitutive equation: The stresses are obtained directly from Hooke’s law as 

σx = E�x = −yEv,xx	 (3) 

This restricts the applicability of this derivation to linear elastic materials. Hence the 
axial normal stress, like the strain, increases linearly from zero at the neutral axis to a 
maximum at the outer surfaces of the beam. 

4.	 Equilibrium relations: Since there are no axial (x-direction) loads applied externally to the 
beam, the total axial force generated by the normal σx stresses (shown in Fig. 2) must be 
zero. This can be expressed as 

The exact expression for curvature is 

dθ d2v/dx2 

= 
ds [1 + (dv/dx)2]3/2 

This gives θ ≈ dv/dx when the squared derivative in the denominator is small compared to 1. 
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Fx = 0 =  σx  dA = −yEv,xx dA

A A


which requires that 

y dA  = 0  
A 

The distance ȳ from the neutral axis to the centroid of the cross-sectional area is 

y dA  
ȳ = � A 

dAA 

Hence ȳ = 0, i.e. the neutral axis is coincident with the centroid of the beam cross-sectional 
area. This result is obvious on reflection, since the stresses increase at the same linear rate, 
above the axis in compression and below the axis in tension. Only if the axis is exactly 
at the centroidal position will these stresses balance to give zero net horizontal force and 
keep the beam in horizontal equilibrium. 

Figure 2: Moment and force equilibrium in the beam. 

The normal stresses in compression and tension are balanced to give a zero net horizontal 
force, but they also produce a net clockwise moment. This moment must equal the value 
of M(x) at that value  of  x, as seen by taking a moment balance around point O: 

MO = 0 =  M  +  σx  ·  y dA  
A 

M = (yEv,xx) · y dA  =  Ev,xx y 2 dA (4) 
A A 

Figure 3: Moment of inertia for a rectangular section.
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The quantity 
� 
y2 dA is the rectangular moment of inertia with respect to the centroidal 

axis, denoted I. For a rectangular cross section of height h and width b as  shown in Fig.  3  
this is: 

h/2 bh3 
I = y 2 b dy  =  (5) 

−h/2 12 

Solving Eqn. 4 for v,xx, the beam curvature is 

v,xx = 
M 
EI 

(6)


5. An explicit formula for the stress can be obtained by using this in Eqn. 3: 

M −My
σx = −yE = (7)

EI I 

The final expression for stress, Eqn. 7, is similar to τθz = Tr/J  for twisted circular shafts: 
the stress varies linearly from zero at the neutral axis to a maximum at the outer surface, it 
varies inversely with the moment of inertia of the cross section, and it is independent of the 
material’s properties. Just as a designer will favor annular drive shafts to maximize the polar 
moment of inertia J , beams are often made with wide flanges at the upper and lower surfaces 
to increase I. 

Example 1 

Figure 4: A cantilevered T-beam. 

Consider a cantilevered T-beam with dimensions as shown in Fig. 4, carrying a uniform loading of w 
N/m. The maximum bending moment occurs at the wall, and is easily found to be Mmax = (wL)(L/2). 
The stress is then given by Eqn. 7, which requires that we know the location of the neutral axis (since y 
and I are measured from there). 
The distance y from the bottom of the beam to the centroidal neutral axis can be found using the 

“composite area theorem” (see Prob. 1). This theorem states that the distance from an arbitrary axis 
to the centroid of an area made up of several subareas is the sum of the subareas times the distance to 
their individual centroids, divided by the sum of the subareas( i.e. the total area): 

Aiyii y = � 
Aii 

For our example, this is 
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(d/2)(cd) + (d  +  b/2)(ab) 
y = 

cd + ab 

The moments of inertia of the individual parts of the compound area with respect to their own 
centroids are just ab3/12 and cd3/12. These moments can be referenced to the horizontal axis through 
the centroid of the compound area using the “parallel axis theorem” (see Prob. 3). This theorem states 
that the moment of inertia Iz� of an area A, relative to any arbitrary axis z� parallel to an axis through 
the centroid but a distance d from it, is the moment of inertia relative to the centroidal axis Iz plus the 
product of the area A and the square of the distance d: 

Iz = Iz + Ad2 

For our example, this is 

ab3 � 
b 

�2 

I(1) = + (ab) d + − y
12 2 

cd3 � 
d 

�2 

I(2) = + (cd) − y
12 2 

The moment of inertia of the entire compound area, relative to its centroid, is then the sum of these two 
contributions: 

I = I(1) + I(2) 

The maximum stress is then given by Eqn. 7 using this value of I and y = y/2 (the distance from the 
neutral axis to the outer fibers), along with the maximum bending moment Mmax. The result of these 
substitutions is 

3 d2c + 6  abd + 3  ab2 wL2 

σx = 
2 c2d4 + 8  abcd3 + 12  ab2cd2 + 8  ab3cd + 2  a2b4  

In practice, each step would likely be reduced to a numerical value rather than working toward an 
algebraic solution. 

In pure bending (only bending moments applied, no transverse or longitudinal forces), the 
only stress is σx as given by Eqn. 7. All other stresses are zero (σy = σz = τxy = τxz = τyz = 0).  
However, strains other than �x are present, due to the Poisson effect. This does not generate 
shear strain (γxy = γxz = γyz = 0), but the normal strains are 

1 σx
�x = [σx − ν(σy + σz)] = 

E E 

1 σx
�y = [σy − ν(σx + σz)] = −ν 

E E 

1 σx
�z = [σz − ν(σx + σy)] = −ν 

E E 
The strains can also be written in terms of curvatures. From Eqn. 2, the curvature along the 
beam is 

�x 
v,xx = − 

y 

This is accompanied by a curvature transverse to the beam axis given by 
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�z ν�x 
v,zz = − = = −νv,xx 

y y 

This transverse curvature, shown in Fig. 5, is known as anticlastic curvature; it can be seen by 
bending a “Pink Pearl” type eraser in the fingers. 

Figure 5: Anticlastic curvature. 

As with tension and torsion structures, bending problems can often be done more easily with 
energy methods. Knowing the stress from Eqn. 7, the strain energy due to bending stress Ub 
can be found by integrating the strain energy per unit volume U∗ = σ2/2E over the specimen 
volume: 

� � � 
σ2 xUb = U ∗ dV = dAdL 

V L A 2E 

� � � �2 � � 
=

1 −My  
dAdL = 

M2 
y 2 dAdL 

L A 2E I L 2EI2 
A 

Since 
� 
A y
2 dA = I, this becomes 

M2 dL 
Ub = (8) 

L 2EI 

If the bending moment is constant along the beam (definitely not the usual case), this becomes 

M2L 
U = 

2EI 

This is another analog to the expression for uniaxial tension, U = P 2L/2AE. 

Buckling 

Long slender columns placed in compression are prone to fail by buckling, in which the column 
develops a kink somewhere along its length and quickly collapses unless the load is relaxed. This 
is actually a bending phenomenon, driven by the bending moment that develops if and when 
when the beam undergoes a transverse deflection. Consider a beam loaded in axial compression 
and pinned at both ends as shown in Fig. 6. Now let the beam be made to deflect transversely 
by an amount v, perhaps by an adventitious sideward load or even an irregularity in the beam’s 
cross section. Positions along the beam will experience a moment given by 
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M(x) =  Pv(x)  (9)  

The beam’s own stiffness will act to restore the deflection and recover a straight shape, but the 
effect of the bending moment is to deflect the beam more. It’s a battle over which influence wins 
out. If the tendency of the bending moment to increase the deflection dominates over the ability 
of the beam’s elastic stiffness to resist bending, the beam will become unstable, continuing to 
bend at an accelerating rate until it fails. 

Figure 6: Imminent buckling in a beam. 

The bending moment is related to the beam curvature by Eqn. 6, so combining this with 
Eqn. 9 gives 

P 
v,xx = v (10)

EI 
Of course, this governing equation is satisfied identically if v = 0, i.e. the beam is straight. We 
wish to look beyond this trivial solution, and ask if the beam could adopt a bent shape that 
would also satisfy the governing equation; this would imply that the stiffness is insufficient to 
restore the unbent shape, so that the beam is beginning to buckle. Equation 10 will be satisfied 
by functions that are proportional to their own second derivatives. Trigonometric functions have 
this property, so candidate solutions will be of the form 

P P 
v = c1 sin x + c2 cos x 

EI EI 

It is obvious that c2 must be zero, since the deflection must go to zero at x = 0  and  L. Further, 
the sine term must go to zero at these two positions as well, which requires that the length L 
be exactly equal to a multiple of the half wavelength of the sine function: 

P 
L = nπ, n = 1, 2, 3, · · ·  

EI 

The lowest value of P leading to the deformed shape corresponds to n = 1; the critical buckling 
load Pcr is then: 

π2EI 
Pcr = (11)

L2 

Note the dependency on L2, so the buckling load drops with the square of the length. 
This strong dependency on length shows why crossbracing is so important in preventing 

buckling. If a brace is added at the beam’s midpoint as shown in Fig. 7 to eliminate deflection 
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there, the buckling shape is forced to adopt a wavelength of L rather than 2L.  This is equivalent 

to making the beam half as long, which increases the critical buckling load by a factor of four.


Figure 7: Effect of lateral support and end conditions on beam buckling. 

Similar reasoning can be used to assess the result of having different support conditions. If 
for instance the beam is cantilevered at one end but unsupported at the other, its buckling shape 
will be a quarter sine wave. This is equivalent to making the beam twice as long as the case 
with both ends pinned, so the buckling load will go down by a factor of four. Cantilevering both 
ends forces a full-wave shape, with the same buckling load as the pinned beam with a midpoint 
support. 

Shear stresses 

Transverse loads bend beams by inducing axial tensile and compressive normal strains in the 
beam’s x-direction, as discussed above. In addition, they cause shear effects that tend to slide 
vertical planes tangentially to one another as depicted in Fig. 8, much like sliding playing cards 
past one another. The stresses τxy associated with this shearing effect add up to the vertical shear 
force we have been calling V , and we now seek to understand how these stresses are distributed 
over the beam’s cross section. The shear stress on vertical planes must be accompanied by an 
equal stress on horizontal planes since τxy = τyx, and these horizontal shearing stresses must 
become zero at the upper and lower surfaces of the beam unless a traction is applied there to 
balance them. Hence they must reach a maximum somewhere within the beam. 
The variation of this horizontal shear stress with vertical position y can be determined by 

examining a free body of width dx cut from the beam a distance y above neutral axis as shown 
in Fig. 9. The moment on the left vertical face is M(x), and on the right face it has increased 
to M + dM . Since the horizontal normal stresses are directly proportional to the moment 
(σx = My/I), any increment in moment dM over the distance dx produces an imbalance in the 
horizontal force arising from the normal stresses. This imbalance must be compensated by a 
shear stress τxy on the horizontal plane at y. The horizontal force balance is written as 

τxy b dx  =  
dM ξ 

dA� 

A� I 
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Figure 8: Shearing displacements in beam bending.


Figure 9: Shear and bending moment in a differential length of beam. 

where b is the width of the beam at y, ξ is a dummy height variable ranging from y to the outer 
surface of the beam, and A� is the cross-sectional area between the plane at y and the outer 
surface. Using dM = V dx  from Eqn. 8 of Module 12, this becomes 

τxy = 
V 

ξ dA�  =  
V Q  

(12)
Ib  A�  Ib  

where here Q(y) =  
�  
A�  ξ dA�  =  ξA� is the first moment of the area above y about the neutral 

axis. 
The parameter Q(y) is notorious for confusing persons new to beam theory. To determine it 

for a given height y relative to the neutral axis, begin by sketching the beam cross section, and 
draw a horizontal line line at the position y at which Q is sought (Fig. 10 shows a rectangular 
beam of of constant width b and height h for illustration). Note the area A� between this line 
and the outer surface (indicated by cross-hatching in Fig. 10). Now compute the distance ξ from 
the neutral axis to the centroid of A� . The parameter Q(y) is the product of A� and ξ; this  is  
the first moment of the area A� with respect to the centroidal axis. For the rectangular beam, 
it is 
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Figure 10: Section of a rectangular beam. 

� � �� � � �� 
h 1 h b h2 

Q = A� ξ = b − y y + − y = − y 2 
2 2 2 2 4 

Note that Q(y), and therefore τxy(y) as well, is parabolic, being maximum at the neutral axis 
(y = 0) and zero at the outer surface (y = h/2). Using I = bh3/12 for the rectangular beam, 
the maximum shear stress as given by Eqn. 12 is 

3V 
τxy,max = τxy|y=0 = 

2bh 

(Keep in mind than the above two expressions for Q and τxy,max are for rectangular cross section 
only; sections of other shapes will have different results.) These shear stresses are most important 
in beams that are short relative to their height, since the bending moment usually increases with 
length and the shear force does not (see Prob. 11). One standard test for interlaminar shear 
strength2 is to place a short beam in bending and observe the load at which cracks develop along 
the midplane. 

Example 2 

Since the normal stress is maximum where the horizontal shear stress is zero (at the outer fibers), and 
the shear stress is maximum where the normal stress is zero (at the neutral axis), it is often possible to 
consider them one at a time. However, the juncture of the web and the flange in I and T beams is often 
a location of special interest, since here both stresses can take on substantial values. 
Consider the T beam seen previously in Example 1, and examine the location at point A shown in 

Fig. 11, in the web immediately below the flange. Here the width b in Eqn. 12 is the dimension labeled 
c; since the beam is thin here the shear stress τxy will tend to be large, but it will drop dramatically 
in the flange as the width jumps to the larger value a. The normal stress at point A is computed from 
σx = My/I, using y = d − y. This value will be almost as large as the outer-fiber stress if the flange 
thickness b is small compared with the web height d. The Mohr’s circle for the stress state at point A 
would then have appreciable contributions from both σx and τxy, and can result in a principal stress 
larger than at either the outer fibers or the neutral axis. 
This problem provides a good review of the governing relations for normal and shear stresses in beams, 

and is also a natural application for symbolic-manipulation computer methods. Using Maple software, 
we might begin by computing the location of the centroidal axis: 

“Apparent Horizontal Shear Strength of Reinforced Plastics by Short Beam Method,” ASTM D2344, Amer
ican Society for Testing and Materials. 
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Figure 11: Section of T beam. 

> ybar := ((d/2)*c*d) + ( (d+(b/2) )*a*b )/( c*d + a*b ); 

Here the “>” symbol is the Maple prompt, and the “;” is needed by Maple to end the command. The 
maximum shear force and bending moment (present at the wall) are defined in terms of the distributed 
load and the beam length as 

> V := w*L; 
> M := -(w*L)*(L/2); 

For plotting purposes, it will be convenient to have a height variable Y measured from the bottom of the 
section. The relations for normal stress, shear stress, and the first principal stress are functions of Y; 
these are defined using the Maple “procedure” command: 

> sigx := proc (Y) -M*(Y-ybar)/Iz end;

> tauxy := proc (Y) V*Q(Y)/(Iz*B(Y) ) end;

> sigp1 := proc (Y) (sigx(Y)/2) + sqrt( (sigx(Y)/2)^2 + (tauxy(Y))^2 ) end;


The moment of inertia Iz is computed as 

> I1 := (a*b^3)/12 + a*b* (d+(b/2)-ybar)^2; 
> I2 := (c*d^3)/12 + c*d* ((d/2)-ybar)^2; 
> Iz := I1+I2; 

The beam width B is defined to take the appropriate value depending on whether the variable Y is in the 
web or the flange: 

> B:= proc (Y) if Y<d then B:=c else B:=a fi end; 

The command “fi” (“if” spelled backwards) is used to end an if-then loop. The function Q(Y) is defined 
for the web and the flange separately: 

> Q:= proc (Y) if Y<d then

> int( (yy-ybar)*c,yy=Y..d) + int( (yy-ybar)*a,yy=d..(d+b) )

> else

> int( (yy-ybar)*a,yy=Y.. (d+b) )

> fi end;


Here “int” is the Maple command for integration, and yy is used as the dummy height variable. The 
numerical values of the various parameters are defined as 

> a:=3: b:=1/4: c:=1/4: d:=3-b: L:=8: w:=100: 
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Figure 12: Stresses at the web-flange junction in a short cantilevered T beam subjected to 
uniform loading. 

Finally, the stresses can be graphed using the Maple plot command 

> plot({sigx,tauxy,sigp1},Y=0..3,sigx=-500..2500); 

The resulting plot is shown in Fig. 12. 

Example 3 

In the previous example, we were interested in the variation of stress as a function of height in a beam of 
irregular cross section. Another common design or analysis problem is that of the variation of stress not 
only as a function of height but also of distance along the span dimension of the beam. The shear and 
bending moments V (x) and  M  (x) vary along this dimension, and so naturally do the stresses σx(x, y) 
and τxy(x, y) that depend on them according to Eqns. 7 and 12. 

Figure 13: (a) Beam in four-point bending. (b) Free-body diagram. 

Consider a short beam of rectangular cross section subjected to four-point loading as seen in Fig. 13. 
The loading, shear, and bending moment functions are: 
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q(x) =  P �x�−1  −  P �x−  a�−1  −  P �x−  2a�−1  +  P �x−  3a�−1  

V (x) =  −  q(x)  dx = −P �x�0 + P �x− a�0 + P �x− 2a�0 − P �x− 3a�0 

M(x) =  −  V (x)  dx = P �x�1 − P �x− a�1 − P �x− 2a�1 + P �x− 3a�1 

The shear and normal stresses can be determined as functions of x and y directly from these functions, 
as well as such parameters as the principal stress. Since σy is zero everywhere, the principal stress is 

σx 
�σx 

�2 
+ τ2σp1 = + xy2 2 

One way to visualize the x-y variation of σp1 is by means of a 3D surface plot, which can be prepared 
easily by Maple. For the numerical values P = 100, a  =  h  = 10, b  = 3 , we could use the expressions 
(Maple responses removed for brevity): 

> # use Heaviside for singularity functions

> readlib(Heaviside);

> sfn := proc(x,a,n) (x-a)^n * Heaviside(x-a) end;

> # define shear and bending moment functions

> V:=(x)-> -P*sfn(x,0,0)+P*sfn(x,a,0)+P*sfn(x,2*a,0)-P*sfn(x,3*a,0);

> M:=(x)-> P*sfn(x,0,1)-P*sfn(x,a,1)-P*sfn(x,2*a,1)+P*sfn(x,3*a,1);

> # define shear stress function

> tau:=V(x)*Q/(Iz*b);

> Q:=(b/2)*( (h^2/4) -y^2);

> Iz:=b*h^3/12;

> # define normal stress function

> sig:=M(x)*y/Iz;

> # define principal stress

> sigp:= (sig/2) + sqrt( (sig/2)^2 + tau^2 );

> # define numerical parameters

> P:=100;a:=10;h:=10;b:=3;

> # make plot

> plot3d(sigp,x=0..3*a,y=-h/2 .. h/2);


The resulting plot is shown in Fig. 14. The dominance of the parabolic shear stress is evident near the 
beam ends, since here the shear force is at its maximum value but the bending moment is small (plot the 
shear and bending moment diagrams to confirm this). In the central part of the beam, where a < x < 2a,  
the shear force vanishes and the principal stress is governed only by the normal stress σx, which varies 
linearly from the beam’s neutral axis. The first principal stress is zero in the compressive lower part 
of this section, since here the normal stress σx is negative and the right edge of the Mohr’s circle must 
pass through the zero value of the other normal stress σy. Working through the plot of Fig. 14 is a good 
review of the beam stress formulas. 

Problems 

1. Derive the composite area theorem for determining the centroid of a compound area. 

i Aiyi y = � 
i Ai 
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Figure 14: Variation of principal stress σp1 in four-point bending. 

Prob. 2 

2. (a)–(d) Locate the centroids of the areas shown. 

3. Derive the “parallel-axis theorem” for moments of inertia of a plane area: 

Ix = Ixg + Ay 2 

Iy = Iyg + Ax 2 

Prob. 3 

4. (a)–(d) Determine the moment of inertia relative to the horizontal centroidal axis of the 
areas shown. 
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Prob. 4 

5. Show that the moment of inertia transforms with respect to axis rotations exactly as does 
the stress: 

Ix� = Ix cos 
2 θ + Iy sin

2 θ − 2Ixy sin θ cos θ 

where Ix and Iy are the moments of inertia relative to the x and y axes respectively and 
Ixy is the product of inertia defined as 

Ixy = xy dA

A


6. (a)–(h) Determine the maxiumum normal stress	σx in the beams shown here, using the 
values (as needed) L = 25  in, a  = 5  in, w  = 10  lb/in, P  = 150 lb. Assume a rectangular 
cross-section of width b = 1 in and height h = 2  in.  

Prob. 6 

7. Justify the statement in ASTM test D790, “Standard Test Methods for Flexural Properties 
of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” which reads: 

When a beam of homogeneous, elastic material is tested in flexure as a simple 
beam supported at two points and loaded at the midpoint, the maximum stress 
in the outer fibers occurs at midspan. This stress may be calculated for any 
point on the load-deflection curve by the following equation: 
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S = 3PL/2bd2 

where S = stress in the outer fibers at midspan, MPa; P = load at a given point 
on the load-deflection curve; L = support span, mm; b = width of beam tested, 
mm; and d = depth of beam tested, mm. 

8. Justify the statement in ASTM test D790, “Standard Test Methods for Flexural Properties 
of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” which reads: 

The tangent modulus of elasticity, often called the ”modulus of elasticity,” is 
the ratio, within the elastic limit of stress to corresponding strain and shall be 
expressed in megapascals. It is calculated by drawing a tangent to the steepest 
initial straight-line portion of the load-deflection curve and using [the expres
sion:] 

Eb = L3m/4bd3 

where Eb = modulus of elasticity in bending, MPa; L = support span, mm; 
d = depth of beam tested, mm; and m = slope of the tangent to the initial 
straight-line portion of the load-deflection curve, N/mm of deflection. 

9. A rectangular beam is to be milled from circular stock as shown.	 What should be the 
ratio of height to width (b/h) to as to minimize the stresses when the beam is put into 
bending? 

Prob. 9 

10. (a)–(h) Determine the maxiumum shear τxy in the beams of Prob. 6, , using the values (as 
needed) L = 25  in, a  = 5  in, w  = 10  lb/in, P  = 150 lb. Assume a rectangular cross-section 
of width b = 1 in and height h = 2  in.  

11.	 Show that the ratio of maximum shearing stress to maximum normal stress in a beam 
subjected to 3-point bending is 

τ h 
= 

σ 2L 
Hence the importance of shear stress increases as the beam becomes shorter in comparison 
with its height. 
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Prob. 11 

12. Read the	 ASTM test D4475, “Standard Test Method for Apparent Horizontal Shear 
Strength of Pultruded Reinforced Plastic Rods By The Short-Beam Method,” and jus
tify the expression given there for the apparent shear strength: 

S = 0.849P/d2  

where S = apparent shear strength, N/m2, (or  psi);  P  = breaking load, N, (or lbf); and 
d = diameter of specimen, m (or in.). 

13.	 For the T beam shown here, with dimensions L = 3, a  = 0.05, b  = 0.005, c  = 0.005, d  = 0.7  
(all in m) and a loading distribution of w = 5000 N/m, determine the principal and 
maximum shearing stress at point A. 

Prob. 13 

14. Determine the maximum normal stress in a cantilevered beam of circular cross section 
whose radius varies linearly from 4r0 to r0 in a distance L, loaded with a force P at the 
free end. 

Prob. 14 

15. A carbon steel column has a length L = 1 m and a circular cross section of diameter d = 20  
mm. Determine the critical buckling load Pc for the case of (a) both ends pinned, (b) one 
end cantilevered, (c) both ends pinned but supported laterally at the midpoint. 
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Prob. 15 

16. A carbon steel column has a length	L = 1 m and a circular cross section. Determine 
the diameter d at which the column has an equal probablity of buckling or yielding in 
compression. 
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