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Introduction 

Beams are long and slender structural elements, differing from truss elements in that they are 
called on to support transverse as well as axial loads. Their attachment points can also be 
more complicated than those of truss elements: they may be bolted or welded together, so the 
attachments can transmit bending moments or transverse forces into the beam. Beams are 
among the most common of all structural elements, being the supporting frames of airplanes, 
buildings, cars, people, and much else. 
The nomenclature of beams is rather standard: as shown in Fig. 1, L is the length, or span; 

b is the width, and h is the height (also called the depth). The cross-sectional shape need not 
be rectangular, and often consists of a vertical web separating horizontal flanges at the top and 
bottom of the beam1 . 

Figure 1: Beam nomenclature. 

As will be seen in Modules 13 and 14, the stresses and deflections induced in a beam under 
bending loads vary along the beam’s length and height. The first step in calculating these quan­
tities and their spatial variation consists of constructing shear and bending moment diagrams, 
V (x) and  M(x), which are the internal shearing forces and bending moments induced in the 
beam, plotted along the beam’s length. The following sections will describe how these diagrams 
are made. 
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Figure 2: A cantilevered beam. 

Free-body diagrams 

As a simple starting example, consider a beam clamped (“cantilevered”) at one end and sub­
jected to a load P at the free end as shown in Fig. 2. A free body diagram of a section cut 
transversely at position x shows that a shear force V and a moment M must exist on the cut 
section to maintain equilibrium. We will show in Module 13 that these are the resultants of shear 
and normal stresses that are set up on internal planes by the bending loads. As usual, we will 
consider section areas whose normals point in the +x direction to be positive; then shear forces 
pointing in the +y direction on +x faces will be considered positive. Moments whose vector 
direction as given by the right-hand rule are in the +z direction (vector out of the plane of the 
paper, or tending to cause counterclockwise rotation in the plane of the paper) will be positive 
when acting on +x faces. Another way to recognize positive bending moments is that they cause 
the bending shape to be concave upward. For this example beam, the statics equations give: 

Fy = 0 =  V  +  P  ⇒  V  = constant = −P (1) 

M0 = 0 =  −M  +  Px  ⇒  M  =  M(x) =  Px  (2) 

Note that the moment increases with distance from the loaded end, so the magnitude of the 
maximum value of M compared with V increases as the beam becomes longer. This is true of 
most beams, so shear effects are usually more important in beams with small length-to-height 
ratios. 

Figure 3: Shear and bending moment diagrams. 

There is a standardized protocol for denoting structural steel beams; for instance W 8 × 40 indicates a 
wide-flange beam with a nominal depth of 8�� and weighing 40 lb/ft of length 

2 

1



� 

� 

� 

As stated earlier, the stresses and deflections will be shown to be functions of V and M , so  it  
is important to be able to compute how these quantities vary along the beam’s length. Plots of 
V (x) and  M(x) are known as shear and bending moment diagrams, and it is necessary to obtain 
them before the stresses can be determined. For the end-loaded cantilever, the diagrams shown 
in Fig. 3 are obvious from Eqns. 1 and 2. 

Figure 4: Wall reactions for the cantilevered beam. 

It was easiest to analyze the cantilevered beam by beginning at the free end, but the choice 
of origin is arbitrary. It is not always possible to guess the easiest way to proceed, so consider 
what would have happened if the origin were placed at the wall as in Fig. 4. Now when a free 
body diagram is constructed, forces must be placed at the origin to replace the reactions that 
were imposed by the wall to keep the beam in equilibrium with the applied load. These reactions 
can be determined from free-body diagrams of the beam as a whole (if the beam is statically 
determinate), and must be found before the problem can proceed. For the beam of Fig. 4: 

Fy = 0 =  −VR  +  P  ⇒  VR  =  P  

Mo  = 0 =  MR  −  PL  ⇒  MR  =  PL  

The shear and bending moment at x are then 

V (x) =  VR  =  P  = constant 

M(x) =  MR  −  VRx  =  PL−  Px  

This choice of origin produces some extra algebra, but the V (x) and  M(x) diagrams shown in 
Fig. 5 are the same as before (except for changes of sign): V is constant and equal to P , and  M  
varies linearly from zero at the free end to PL  at the wall. 

Distributed loads 

Transverse loads may be applied to beams in a distributed rather than at-a-point manner as 
depicted in Fig. 6, which might be visualized as sand piled on the beam. It is convenient to 
describe these distributed loads in terms of force per unit length, so that q(x) dx would be the 
load applied to a small section of length dx by a distributed load q(x). The shear force V (x) set  
up in reaction to such a load is 

x 
V (x) =  −  q(ξ)  dξ (3) 

x0 
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Figure 5: Alternative shear and bending moment diagrams for the cantilevered beam.


Figure 6: A distributed load and a free-body section. 

where x0 is the value of x at which q(x) begins,  and  ξ  is a dummy length variable that looks 
backward from x. Hence V (x) is the area under the q(x) diagram up to position x. The moment 
balance is obtained considering the increment of load q(ξ) dξ applied to a small width dξ of beam, 
a distance  ξ  from point x. The incremental moment of this load around point x is q(ξ) ξ dξ, so  
the moment M(x) is  

x  
M  =  q(ξ)  ξ dξ  (4) 

x0 

This can be related to the centroid of the area under the q(x) curve up to x, whose distance 
from x is 

¯ q(ξ) ξ dξ  
ξ = � 

q(ξ) dξ 

Hence Eqn. 4 can be written 

M = Qξ̄ (5) 

where Q = q(ξ) dξ is the area. Therefore, the distributed load q(x) is statically equivalent to 
a concentrated load of magnitude Q placed at the centroid of the area under the q(x) diagram. 

Example 1 

Consider a simply-supported beam carrying a triangular and a concentrated load as shown in Fig. 7. For 
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Figure 7: Distributed and concentrated loads. 

the purpose of determining the support reaction forces R1 and R2, the distributed triangular load can be 
replaced by its static equivalent. The magnitude of this equivalent force is 

� 2 

Q = (−600x) dx = −1200 
0 

The equivalent force acts through the centroid of the triangular area, which is is 2/3 of the distance from 
its narrow end (see Prob. 1). The reaction R2 can now be found by taking moments around the left end: 

MA = 0 =  −500(1) − (1200)(2/3) + R2(2) → R2 = 650 

The other reaction can then be found from vertical equilibrium: 

Fy = 0 =  R1  −  500 − 1200 + 650 = 1050 

Successive integration method


Figure 8: Relations between distributed loads and internal shear forces and bending moments. 

We have already noted in Eqn. 3 that the shear curve is the negative integral of the loading 
curve. Another way of developing this is to consider a free body balance on a small increment 
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of length dx over which the shear and moment changes from V and M to V + dV and M + dM 
(see Fig. 8). The distributed load q(x) can be taken as constant over the small interval, so the 
force balance is: 

Fy = 0 =  V  +  dV + q dx  −  V  = 0  

dV 
dx 
= −q (6)


or 

V (x) =  −  q(x)  dx (7) 

which is equivalent to Eqn. 3. A moment balance around the center of the increment gives 

� dx dx 
Mo = (M  +  dM) + (V  +  dV ) + V − M 

2 2 
As the increment dx is reduced to the limit, the term containing the higher-order differential 
dV dx vanishes in comparison with the others, leaving 

dM 
= −V (8)

dx 

or 

M(x) =  −  V  (x)  dx (9) 

Hence the value of the shear curve at any axial location along the beam is equal to the negative 
of the slope of the moment curve at that point, and the value of the moment curve at any point 
is equal to the negative of the area under the shear curve up to that point. 
The shear and moment curves can be obtained by successive integration of the q(x) distri­

bution, as illustrated in the following example. 

Example 2 

Consider a cantilevered beam subjected to a negative distributed load q(x) =  −q0  =constant as shown 
in Fig. 9; then 

V (x) =  −  q(x)  dx = q0x + c1 

where c1 is a constant of integration. A free body diagram of a small sliver of length near x = 0  shows  
that V (0) = 0, so the c1 must be zero as well. The moment function is obtained by integrating again: 

M(x) =  −  V  (x)  dx = − 
1 
q0x 2 + c2
2 

where c2 is another constant of integration that is also zero, since M(0) = 0. 

Admittedly, this problem was easy because we picked one with null boundary conditions, and 
with only one loading segment. When concentrated or distributed loads are found at different 
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Figure 9: Shear and moment distributions in a cantilevered beam. 

positions along the beam, it is necessary to integrate over each section between loads separately. 
Each integration will produce an unknown constant, and these must be determined by invoking 
the continuity of slopes and deflections from section to section. This is a laborious process, but 
one that can be made much easier using singularity functions that will be introduced shortly. 
It is often possible to sketch V and M diagrams without actually drawing free body dia­

grams or writing equilibrium equations. This is made easier because the curves are integrals or 
derivatives of one another, so graphical sketching can take advantage of relations among slopes 
and areas. 
These rules can be used to work gradually from the q(x) curve  to  V  (x) and then to M(x). 

Wherever a concentrated load appears on the beam, the V (x) curve must jump by that value, 
but in the opposite direction; similarly, the M(x) curve must jump discontinuously wherever a 
couple is applied to the beam. 

Example 3 

Figure 10: A simply supported beam.


To illustrate this process, consider a simply-supported beam of length L as shown in Fig. 10, loaded 

7




� ��  �  

� 

over half its length by a negative distributed load q = −q0. The solution for V (x) and  M  (x) takes  the  
following steps: 

1.	 The reactions at the supports are found from static equilibrium. Replacing the distributed load 
by a concentrated load Q = −q0(L/2) at the midpoint of the q distribution (Fig. 10(b))and taking 
moments around A: 

q0L 3L 3q0L 
RB L = ⇒ RB = 

2 4 8 

The reaction at the right end is then found from a vertical force balance: 

q0L q0L 
RA = −RB = 

2 8 
Note that only two equilibrium equations were available, since a horizontal force balance would 
provide no relevant information. Hence the beam will be statically indeterminate if more than two 
supports are present. 

The q(x) diagram is then just the beam with the end reactions shown in Fig. 10(c). 

2. Beginning the	 shear diagram at the left, V immediately jumps down to a value of −q0L/8 in  
opposition to the discontinuously applied reaction force at A; it remains at this value until x = L/2 
as shown in Fig. 10(d). 

3. At x = L/2, the V (x) curve starts to rise with a constant slope of +q0 as the area under the q(x) 
distribution begins to accumulate. When x = L, the shear curve will have risen by an amount 
q0L/2, the total area under the q(x) curve; its value is then (−q0l/8) + (q0L/2) = (3q0L/8). The 
shear curve then drops to zero in opposition to the reaction force RB = (3q0L/8). (The V and M 
diagrams should always close, and this provides a check on the work.) 

4. The moment diagram starts from zero as shown in Fig. 10(e), since there is no discontinuously 
applied moment at the left end. It moves upward at a constant slope of +q0L/8, the value of the 
shear diagram in the first half of the beam. When x = L/2, it will have risen to a value of q0L2/16. 

5.	 After x = L/2, the slope of the moment diagram starts to fall as the value of the shear diagram 
rises. The moment diagram is now parabolic, always being one order higher than the shear diagram. 
The shear diagram crosses the V = 0 axis at x = 5L/8, and at this point the slope of the moment 
diagram will have dropped to zero. The maximum value of M is 9q0L2/32, the total area under 
the V curve up to this point. 

6.	 After x = 5L/8, the moment diagram falls parabolically, reaching zero at x = L. 

Singularity functions 

This special family of functions provides an automatic way of handling the irregularities of 
loading that usually occur in beam problems. They are much like conventional polynomial 
factors, but with the property of being zero until “activated” at desired points along the beam. 
The formal definition is 

0, x < a  
fn(x) =  �x  − a�n  = 	 (10)

(x − a)n, x > a  

where n = −2, −1, 0, 1, 2, · · ·. The function �x − a�0 is a unit step function, �x − a�−1 is a 
concentrated load, and �x − a�−2 is a concentrated couple. The first five of these functions are 
sketched in Fig. 11. 
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Figure 11: Singularity functions. 

The singularity functions are integrated much like conventional polynomials: 

� x �x − a�n+1 
�x − a�n dx = n ≥ 0 (11) 

−∞ n + 1  

However, there are special integration rules for the n = −1 and  n  =  −2 members, and this 
special handling is emphasized by using subscripts for the n index: 

x 
�x − a�−2 dx = �x − a�−1 (12) 

−∞ 

x 
�x − a�−1 dx = �x − a�0 (13) 

−∞ 

Example 4 

Applying singularity functions to the beam of Example 4.3, the loading function would be written 

q(x) = +  
q0L  
�x  −  0�−1  −  q0�x  −  

L  
�0  

8 2  
The reaction force at the right end could also be included, but it becomes activated only as the problem 
is over. Integrating once: 

q0L L 
V (x) =  −  q(x)  dx = − �x�0 + q0�x − �1 

8 2 

The constant of integration is included automatically here, since the influence of the reaction at A has 
been included explicitly. Integrating again: 

M(x) =  −  V  (x)  dx = 
q0L 
�x�1 − 

q0 
�x − 

L 
�2 

8 2 2 

Examination of this result will show that it is the same as that developed previously. 
MapleTM symbolic manipulation software provides an efficient means of plotting these functions. The 

following shows how the moment equation of this example might be plotted, using the Heaviside function 
to provide the singularity. 
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# Define function sfn in terms of a and n 
>sfn:=proc(a,n) (x-a)^n*Heaviside(x-a) end; 

sfn := proc(a, n) (x - a)^n*Heaviside(x - a) end proc 

# Input moment equation using singularity functions 
>M(x):=(q*L/8)*sfn(0,1)-(q/2)*sfn(L/2,2); 

M(x) := 1/8 q L x  Heaviside(x)

2


- 1/2 q (x - 1/2 L) Heaviside(x - 1/2 L)


# Provide numerical values for q and L: 
>q:=1: L:=10: 

# Plot function 
>plot(M(x),x=0..10); 

Figure 12: Maple singularity plot


Problems 

1. (a)–(c) Locate the magnitude and position of the force equivalent to the loading distribu­
tions shown here. 

2. (a)–(c) Determine the reaction forces at the supports of the cases in Prob. 1. 

3. (a)–(h) Sketch the shear and bending moment diagrams for the load cases shown here. 

4.	 (a)–(h) Write singularity-function expressions for the shear and bending moment distribu­
tions for the cases in Prob. 3. 

5.	 (a)–(h) Use Maple (or other) software to plot the shear and bending moment distributions 
for the cases in Prob. 3, using the values (as needed) L = 25  in, a  = 5  in, w  = 10  lb/in, P  =  
150 lb. 
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Prob. 1


Prob. 3 

6.	 The transverse deflection of a beam under an axial load P is taken to be δ(y) =  δ0  sin(yπ/L), 
as shown here. Determine the bending moment M(y) along  the beam.  

7. Determine the bending moment M(θ) along the circular curved beam shown. 
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Prob. 6


Prob. 7
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