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Introduction 

A truss is an assemblage of long, slender structural elements that are connected at their ends. 
Trusses find substantial use in modern construction, for instance as towers (see Fig. 1), bridges, 
scaffolding, etc. In addition to their practical importance as useful structures, truss elements 
have a dimensional simplicity that will help us extend further the concepts of mechanics in­
troduced in the modules dealing with uniaxial response. This module will also use trusses to 
introduce important concepts in statics and numerical analysis that will be extended in later 
modules to more general problems. 

Figure 1: Truss tower supporting the NASA wind turbine generator at Oahu, Hawaii.


Example 1 

Trusses are often used to stiffen structures, and most people are familiar with the often very elaborate 
systems of cross-bracing used in bridges. The truss bracing used to stiffen the towers of suspension bridges 
against buckling are hard to miss, but not everyone notices the vertical truss panels on most such bridges 
that serve to stiffen the deck against flexural and torsional deformation. 
Many readers will have seen the very famous movie, taken on November 7, 1940, by Barney Elliott of 

The Camera Shop in Tacoma, Washington. The wind was gusting up to 42 mph that day, and induced a 
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sequence of spectacular undulations and eventual collapse of the Tacoma Narrows bridge1 . This bridge 
was built using relatively short I-beams for deck stiffening rather than truss panels, reportedly for aesthetic 
reasons; bridge designs of the period favored increasingly slender and graceful-appearing structures. Even 
during construction, the bridge became well known for its alarming tendency to sway in the wind, earning 
it the local nickname “Galloping Gertie.” 
Truss stiffeners were used when the bridge was rebuilt in 1950, and the new bridge was free of the 

oscillations that led to the collapse of its predecessor. This is a good example of one important use of 
trusses, but it is probably an even better example of the value of caution and humility in engineering. The 
glib answers often given for the original collapse — resonant wind gusts, von Karman vortices, etc. — 
are not really satisfactory beyond the obvious statement that the deck was not stiff enough. Even today, 
knowledgeable engineers argue about the very complicated structural dynamics involved. Ultimately, 
many uncertainties exist even in designs completed using very modern and elaborate techniques. A wise 
designer will never fully trust a theoretical result, computer-generated or not, and will take as much 
advantage of experience and intuition as possible. 

Statics analysis of forces 

Newton observed that a mass accelerates according to the vector sum of forces applied to it: 
F = ma. (Vector quantities indicated by boldface type.) In structures that are anchored 

so as to prevent motion, there is obviously no acceleration and the forces must sum to zero. 
This vector equation has as many scalar components as the dimensionality of the problem; for 
two-dimensional cases we have: 

Fx = 0  (1)  

Fy  = 0  (2)  

where Fx and Fy are the components of F in the x and y cartesian coordinate directions. 
These two equations, which we can interpret as constraining the structure against translational 
motion in the x and y directions, allow us to solve for at most two unknown forces in structural 
problems. If the structure is constrained against rotation as well as translation, we can add a 
moment equation that states that the sum of moments or torques in the x-y plane must also 
add to zero: 

Mxy = 0  (3)  

In two dimensions, then, we have three equations of static equilibrium that can be used to solve 
for unknown forces. In three dimensions, a third force equation and two more moment equations 
are added, for a total of six: 

Fx = 0  Mxy = 0  
Fy  = 0  Mxz = 0  (4) 
Fz  = 0  Myz = 0  

These equations can be applied to the structure as a whole, or we can (conceptually) remove 
a piece of the structure and consider the forces acting on the removed piece. A sketch of the 

An interactive instructional videodisk of the Tacoma Narrows Bridge collapse is available from Wiley Educa­
tional Software (ISBN 0-471-87320-9). 
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piece, showing all forces acting on it, is called a free body diagram. If the number of unknown 
forces in the diagram is equal to or less than the number of available static equilibrium equations, 
the unknowns can be solved in a straightforward manner; such problems are termed statically 
determinate. Note that these equilibrium equations do not assume anything about the material 
from which the structure is made, so the resulting forces are also independent of the material. 
In the analyses to be considered here, the truss elements are assumed to be joined together 

by pins or other such connections that allow free rotation around the joint. As seen in the free-
body diagram of Fig. 2, this inability to resist rotation implies that the force acting on a truss 
element’s pin joint must be in the element’s axial direction: any transverse component would 
tend to cause rotation, and if the element is to be in static equilibrium the moment equation 
forces the transverse component to vanish. If the element ends were to be welded or bolted 
rather than simply pinned, the end connection could transmit transverse forces and bending 
moments into the element. Such a structure would then be called a frame rather than a truss, 
and its analysis would have to include bending effects. Such structures will be treated in the 
Module on Bending. 

Figure 2: Pinned elements cannot support transverse loads. 

Knowing that the force in each truss element must be be in the element’s axial direction is 
the key to solving for the element forces in trusses that contain many elements. Each element 
meeting at a pin joint will pull or push on the pin depending on whether the element is in tension 
or compression, and since the pin must be in static equilibrium the sum of all element forces 
acting on the pin must equal the force that is externally applied to the pin: 

Fe = Fii 
e 

Here the e superscript indicates the vector force supplied by the element on the ith pin in the  
truss and Fi in the force externally applied to that pin. The summation is over all the elements 
connected to the pin. 

Example 2 

The very simple two-element truss often found in high school physics books and shown in Fig. 3 can be 
analyzed this way. Intuition tells us that the upper element, connecting joints A and B, is  in  tension  
while element BC is in compression. In more complicated problems it is not always possible to determine 
the sign of the element force by inspection, but it doesn’t matter. In sketching the free body diagrams 
for the pins, the load can be drawn in either direction; if the guess turns out to be wrong, the solution 
will give a negative value for the force magnitude. 
The unknown forces on the connecting pin B are in the direction of the elements attached to it, 

and since there are only two such forces they may be determined from the two static equilibrium force 
equations: 
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Figure 3: A two-element truss. 

� P 
Fy = 0 = +FAB sin θ − P ⇒ FAB = 

sin θ 

� P 
Fx = 0 =  −FAB cos θ + FBC ⇒ FBC = FAB cos θ = 

tan θ 

In more complicated trusses, the general approach is to start at a pin joint containing no more 
than two elements having unknown forces, and then work from joint to joint using the element 
forces from the previous step to reduce the number of unknowns. Consider the 6-element truss 
shown in Fig. 4, in which the joints and elements are numbered as indicated, with the element 
numbers appearing in circles. Joint 3 is a natural starting point, since only forces F2 and F5 
appear as unknowns. Once F5 is found, an analysis of joint 5 has only forces F4 and F6 as 
unknowns. Finally, the free-body diagram of node 2 can be completed, since only F1 and F3 are 
now unknown. The force analysis is then complete. 

Figure 4: A six-element truss. 

There are often many ways to complete problems such as this, perhaps with some being easier 
than others. Another approach might be to start at one of the joints at the wall; i.e. joint 1 or 
joint 4. The problem as originally stated gives these joints as having fixed displacements rather 
than specified forces. This is an example of a mixed boundary value problem, with some parts 
of the boundary having specified forces and the remaining parts having specified displacements. 
Such problems are generally more difficult, and require more mathematical information for their 
solution than problems having only one or the other type of boundary condition. However, in the 
statically determinate problems, the structure can be converted to a load-only type by invoking 
static equilibrium on the structure as a whole. The fixed-displacement boundary conditions are 
then replaced by reaction forces that are set up at the points of constraint. 
Moment equilibrium equations were not useful in the joint-by-joint analysis described earlier, 

since individual elements cannot support moments. But as seen in Fig. 5, we can consider the 
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Figure 5: Free-body diagram of six-element truss 

6-element truss as a whole and take moments around joint 4. With counterclockwise-tending 
moments being positive, this gives 

M4 = 0 =  F1  ×  L  −  P  ×  2L  ⇒  F1  = 2P  

The force F1 is the force applied by the wall to joint 1, and this is obviously equal to the tensile 
force in element 1. There can be no vertical component of this reaction force, since the element 
forces must be axial and only element 1 is connected to joint 1. At joint 4, reaction forces Rx 

and Ry can act in both the x and y directions since element 3 is not perpendicular to the wall. 
These reaction forces can be found by invoking horizontal and vertical equilibrium: 

Fx = 0 =  −F1  +  Rx  ⇒  Rx  =  F1  = 2P  

Fy  = 0 = +Ry  −  P  ⇒  Ry  =  P  

A joint-by-joint analysis can now be started from joint 4, since only two unknown forces act √ 
there (see Fig. 6). For vertical equilibrium, F3 cos 45 = P , so  F3  = 2  P . Then for horizontal 
equilibrium F6 + F3 cos 45 = 2P√, so  F6  =  P . Now moving to joint 5, horizontal equilibrium gives 
F5 cos 45 = P so F5 = F3 = 2 P , and vertical equilibrium gives F4 = F5 cos 45 so F4 = P . 
Finally, at joint 3 horizontal equilibrium gives F2 = F5 cos 45 so F2 = P . 

Figure 6: Individual joint diagrams. 

In actual truss design, once each element’s force is known its cross-sectional area can then be 
calculated so as to keep the element stress according to σ = P/A  safely less than the material’s 
yield point. Elements in compression, however, must be analyzed for buckling as well, since 
their ratios of EI to L2 are generally low. The buckling load can be increased substantially 
by bracing the element against sideward deflection, and this bracing is evident in most bridges 
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and cranes. Also, the truss elements are usually held together by welded or bolted joints rather 
than pins. These joints can carry some bending moments, which helps stiffen the truss against 
buckling. 

Deflections 

It may be important in some applications that the truss be stiff enough to keep the deformations 
inside specified limits. Astronomical telescopes are an example, since deflection of the structure 
supporting the optical assemblies can degrade the focusing ability of the instrument. A typical 
derrick or bridge, however, is probably more likely to be strength rather than stiffness-critical, 
so it might appear deflections would be relatively unimportant. However, it will be seen that 
consideration of deflections is necessary to solve the great number of structures that are not 
statically determinate. The following sections treat truss deflections for both these reasons. 

Geometrical approach 

Once the axial force in each truss element is known, the individual element deformations follow 
directly using δ = PL/AE. The deflection of any point in the truss can then be determined 
geometrically, invoking the requirement that the elements remain pinned together at their at­
tachment points. In the symmetric two-element truss shown in Fig. 7, joint B will obviously 
deflect downward vertically. The relation between the the axial deformation δ of the elements 
and the vertical deflection of the joint δv is then seen to be 

δ 
δv = 

cos θ 
It is assumed here that the deformation is small enough that the gross aspects of the geometry 
are essentially unchanged; in this case, that the angle θ is the same before and after the load is 
applied. 

Figure 7: Two-element truss. 

In geometrical analyses of more complicated trusses, it is sometimes convenient to visualize 
unpinning the elements at a selected joint, letting the elements elongate or shrink according 
to the axial force they are transmitting, and then swinging them around the still-pinned joint 
until the pin locations match up again. The motion of the unpinned ends would trace out 
circular paths, but if the deflections are small the path can be approximated as a straight line 
perpendicular to the element axis. The joint position can then be computed from Pythagorean 
relationships. 
In the earlier two-element truss shown in Fig. 3, we had PAB = P/ sin θ and PBC = P/ tan θ. 

If the pin at joint B were removed, the element deflections would be 
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P L 
δAB = (tension) 

sin θ AE AB 

P L 
δBC = (compression) 

tan θ AE BC 

The total downward deflection of joint B is then 

δAB δBC
δv = δ1 + δ2 = + 

sin θ tan θ 

P L P L 
= + 
sin2 θ AE AB tan2 θ AE BC 

These deflections are shown in Fig. 8. 

Figure 8: Displacements in the two-element truss. 

The horizontal deflection δh of the pin is easier to compute, since it is just the contraction 
of element BC: 

P L 
δh = δBC = 

tan θ AE BC 

Energy approach 

The geometrical approach to truss deformation analysis can be rather tedious, especially as 
problems become larger. Many problems can be solved more easily using a strain energy rather 
than force-at-a-point approach. The total strain energy U in a single elastically loaded truss 
element is 

U = P dδ  

The increment of deformation dδ is related to a corresponding increment of load dP by 

PL  L 
δ = ⇒ dδ = dP 
AE AE 

The strain energy is then 

L P 2L 
U = P dP = 

AE 2AE 
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Figure 9: Increments of strain and complimentary strain energy. 

The incremental increase in strain energy corresponding to an increase in deformation dδ is 
just dU = P dδ. If the force-elongation curve is linear, this is identical to the increase in the 
quantity called the complimentary strain energy: dU c = δdP . These quantities are depicted 
in Fig. 9. Now consider a system with many joints, subjected to a number of loads acting at 
different joints. If we were to increase the ith load slightly while holding all the other loads 
constant, the increase in the total complementary energy of the system would be 

dU c = δidPi 

where δi is the displacement that would occur at the location of Pi, moving in the same direction 
as the force vector for Pi. Rearranging, 

∂U c 
δi = 

∂Pi 

and since U c = U : 

∂U 
δi = (5)

∂Pi 

Hence the displacement at a given point is the derivative of the total strain energy with respect 
to the load acting at that point. This provides the basis of an extremely useful method of 
displacement analysis known as Castigliano’s Theorem2, which can be stated for truss problems 
as the following recipe: 

1. Let the load applied at the joint whose deformation is sought, in the direction of the desired 
deformation, be written as an algebraic variable, say Q. If the load is known numerically, 
replace the number with a letter. If there is no load at the desired location and direction, 
put an imaginary one there that will be set to zero at the end of the problem. 

2. Solve for the forces Fi(Q) in each truss element, each of which may be dependent on the 
load Q assigned in the previous step. 

3. Use these forces to compute the strain energy for each element, and sum the energies in 
each element to obtain the total strain energy for the truss: 

From the 1873 thesis of the Italian engineer Alberto Castigliano (1847–1884), at the Turin Polytechnical 
Institute. 
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Utot = Ui = (6)
2AiEii i 

Each term in this summation may contain the variable Q. 

4. The deformation congruent to Q, i.e. the deformation at the point where Q is applied and 
in the same direction as Q, is then  

∂Utot � FiLi ∂Fi(Q)
δQ = = (7)

∂Q AiEi ∂Qi 

5. The load Q is replaced by its numerical value, if known. Or by zero, if it was an imaginary 
load in the first place. 

Applying this method to the vertical deflection of the two-element truss of Fig. 3, the problem 
already has a force in the required direction, the applied downward load P . The forces have 
already been shown to be PAB = P/ sin θ and PBC = P/ tan θ, so the vertical deflection can be 
written immediately as 

L ∂PAB L ∂PBC
δv = PAB + PBC

AE AB ∂P AE BC ∂P 
� � � � � � 

P L 1 P L 1 P AE 1 
= + + 
sin θ AE sin θ tan θ AE sin θ tan θ L tan θAB AB BC 

This is identical to the expression obtained from geometric considerations. The energy method 
didn’t save too many algebraic steps in this case, but it avoided having to visualize and idealize 
the displacements geometrically. 
If the horizontal displacement at joint B is desired, the method requires that a horizontal 

force exist at that point. One isn’t given, so we place an imaginary one there, say Q. The truss 
is then reanalyzed statically to find how the element forces are influenced by this new force 
Q. The upper element force is PAB = P/ sin θ as before, and the lower element force becomes 
PBC = P/ tan θ − Q. Repeating the Castigliano process, but now differentiating with respect to 
Q: 

L ∂PAB L ∂PBC
δh = PAB + PBC

AE AB ∂Q AE BC ∂Q 

P L P L 
= · 0 +  − Q (−1)
sin θ AE AB tan θ AE BC 

The first term vanishes upon differentiation since Q did not appear in the expression for PAB . 
This is the method’s way of noticing that the horizontal deflection is determined completely by 
the contraction of element BC. Upon setting Q = O, the final result is 

P AE 
δh = − 

tan θ L BC 

as before. 
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Example 3 

Consider the 6-element truss of Fig. 4 whose individual element forces were found earlier by free body 
diagrams. We are seeking the vertical deflection of node 3, which is congruent to the force P . Using 
Castigliano’s method, this deflection is the derivative of the total strain energy with respect to P . Equiv­
alently, we can differentiate the strain energy of each element with respect to P individually, and then 
add the contributions of each element to obtain the final result: 

∂ F 2Li 
� 
FiLi ∂Fi 

� 

δP = i = 
∂P 2AiEi AiEi ∂P 

i i 

To systemize this approach, we can form a table of needed parameters as follows: 

Li ∂Fi FiLi ∂Fii Fi AiEi ∂P AiEi ∂P 
1 2P  L/AE  2 4PL/AE  
2  
3  

P√ 
2P 

L/AE  √ 
2L/AE 

1 PL/AE  √ 
2 2.83PL/AE  

4  
5  

P√ 
2P 

L/AE  √ 
2L/AE 

1 PL/AE  √ 
2 2.83PL/AE  

6  P  L/AE  1  PL/AE  
δP  =  

�  
= 12.7PL/AE  

If for instance we have as numerical parameters P = 1000 lbs, L = 100 in, E = 30 Mpsi and A = 0.5 in2  ,  
then δP = 0.0844 in. 

Statically indeterminate trusses 

It has already been noted that that the element forces in the truss problems treated up to now 
do not depend on the properties of the materials used in their construction, just as the stress 
in a simple tension test is independent of the material. This result, which certainly makes the 
problem easier to solve, is a consequence of the earlier problems being statically determinate; 
i.e. able to be solved using only the equations of static equilibrium. Statical determinacy, then, 
is an important aspect of the difficulty we can expect in solving the problem. Not all problems 
are statically determinate, and one consequence of this indeterminacy is that the forces in the 
structure may depend on the material properties. 
After performing a static analysis of the truss as a whole to find reaction forces at the 

supports, we typically try to find the element forces using the joint-at-a-time method described 
above. However, there can be at most two unknown forces at a pin joint in a two-dimensional 
truss problem if the joint is to be solved using statics alone, since the moment equation does 
not provide usable information in this case. If more unknowns are present no matter in which 
order the truss joints are analyzed, then a number of additional equations equal to the remaining 
unknowns must be found. These extra equations are those enforcing compatibility of the various 
joint displacements, each of which must be such as to keep the truss joints pinned together. 

Example 4 

A simple example, just two truss elements acting in parallel as shown in Fig. 10, will show the 
approach needed. Here the compatibility condition is just 

δA = δB 
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Figure 10: Two truss elements in parallel. 

The individual element displacements are related to the element forces by δ = PL/AE, which is material-
dependent and can be termed a constitutive equation because it reflects the material’s mechanical con­
stitution. Combining this with the compatibility condition gives 

PAL PB L AB EB 
= ⇒ PB = PA

AAEA AB EB AAEA 

Finally, the individual element forces must add up to the total applied load P in order to satisfy equilib­
rium: 

⎛ ⎞ 
AB EB 1 ⎝ ⎠P = PA + PB = PA + PA ⇒ PA = P � � 
AAEA 1 +  AB  EB  

AAEA  

Note that the final answer in the above example depends on the element dimensions and 
material stiffnesses, as promised. Here the geometrical compatibility condition was very simple 
and obvious, namely that the displacements of the two element end joints were identical. In more 
complex trusses these relations can be subtle, but tend to become more evident with practice. 
Three different types of relations were used in the above problem: a compatibility equation, 

stating how the structure must deform kinematically in order to remain connected; a constitutive 
equation, embodying the stress-strain response of the material; and an equilibrium equation, 
stating that the forces must sum to zero if acceleration is to be avoided. These three concepts, 
made somewhat more general mathematically to handle geometrically more elaborate problems, 
underlie all of solid mechanics. 
In the Module on Elastic Response, we noted that the stress in a tensile specimen is deter­

mined only by considerations of static equilibrium, being given by σ = P/A  independent of the 
material properties. We see now that the statical determinacy depends, among other things, on 
the material being homogeneous, i.e. identical throughout. If the tensile specimen is composed 
of two subunits each having different properties, the stresses will be allocated differently among 
the two units, and the stresses will not be uniform. Whenever a stress or deformation formula 
is copied out of a handbook, the user must be careful to note the limitations of the underlying 
theory. The handbook formulae are usually applicable only to homogeneous materials in their 
linear elastic range, and higher-order theories must be used when these conditions are not met. 

Example 5 

Figure 11(a) shows another statically indeterminate truss, with three elements having the same area and 
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Figure 11: (a) Three-element statically indeterminate truss. (b) Free-body diagram of node 4. 
(c) Deflections at node 4. 

modulus, but different lengths, meeting at a common node. At a glance, we can see node 4 has three 
elements meeting there whose forces are unknown, and this is one more than the useful equations of static 
equilibrium will be able to handle. This is also evident in the free-body diagram of Fig. 11(b): horizontal 
and vertical equilibrium gives 

Fx = 0 =  −F1  +  F2  →  F1  =  F2  

Fy  = 0 =  −P  +  F2  +  F1  cos θ + F3 cos θ → F2 + 2F3  cos θ = P (8) 

These two equations are clearly not sufficient to determine the unknowns F1, F2, F3. We need another 
equation, and it’s provided by requiring the deformation be such as to keep the truss pinned together 
at node 4. Since the symmetry of the problems tells us that the deflection there is straight downward, 
the diagram in Fig. 11(c) can be used. And since the deflection is small relative to the lengths of the 
elements, the angle of element 3 remains essentially unchanged after deformation. This lets us write 

δ3 = δ2 cos θ 

or 

F3L3 F2L2 
= cos θ 

A3E3 A2E2 

Using A2 = A3, E2 = E3, L3 = L, and  L2  =  L cos θ, this becomes 

F3 = F2 cos 2 θ 

Solving this simultaneously with Eqn. 8, we obtain 

P P cos2 θ 
F2 = , F3  =  

1 + 2 cos3  θ 1 + 2 cos3  θ  

Note that the modulus E does not appear in this result, even though the problem is statically indeter­
minate. If the elements had different stiffnesses, however, the cancellation of E would not have occurred. 

12




Matrix analysis of trusses 

The joint-by-joint free-body analysis of trusses is tedious for large and complicated structures, 
especially if statical indeterminacy requires that displacement compatibility be considered along 
with static equilibrium. However, even statically indeterminate trusses can be solved quickly 
and reliably for both forces and displacements by a straightforward numerical procedure known 
as matrix structural analysis. This method is a forerunner of the more general computer method 
named finite element analysis (FEA), which has come to dominate much of engineering analysis 
in the past two decades. The foundations of matrix analysis will be outlined here, primarily as 
an introduction to the more general use of FEA in stress analysis. 
Matrix analysis of trusses operates by considering the stiffness of each truss element one 

at a time, and then using these stiffnesses to determine the forces that are set up in the truss 
elements by the displacements of the joints, usually called “nodes” in finite element analysis. 
Then noting that the sum of the forces contributed by each element to a node must equal the 
force that is externally applied to that node, we can assemble a sequence of linear algebraic 
equations in which the nodal displacements are the unknowns and the applied nodal forces are 
known quantities. These equations are conveniently written in matrix form, which gives the 
method its name: 

⎧ ⎫ ⎧ ⎫ 
K11 K12 K1n ⎪ ⎪ ⎪ ⎪ 

⎡ ⎤ 
· · ·  ⎪ u1 ⎪ ⎪ f1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎨ ⎬ ⎢ K21 K22 · · ·  K2n  ⎥ u2 f2 ⎢ . . . . ⎥ . = . ⎢ ⎥. . . . ⎪ . ⎪ ⎪ . ⎪ ⎣ . . . . ⎦⎪ . ⎪ ⎪ . ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭Kn1  Kn2  · · ·  Knn un fn 

Here ui and fj indicate the deflection at the ith node and the force at the jth node (these 
would actually be vector quantities, with subcomponents along each coordinate axis). The Kij 
coefficient array is called the global stiffness matrix, with  the  ij component being physically the 
influence of the jth displacement on the ith force. The matrix equations can be abbreviated as 

Kij uj = fi or Ku = f (9) 

using either subscripts or boldface to indicate vector and matrix quantities. 
Either the force externally applied or the displacement is known at the outset for each node, 

and it is impossible to specify simultaneously both an arbitrary displacement and a force on a 
given node. These prescribed nodal forces and displacements are the boundary conditions of 
the problem. It is the task of analysis to determine the forces that accompany the imposed 
displacements, and the displacements at the nodes where known external forces are applied. 

Stiffness matrix for a single truss element 

As a first step in developing a set of matrix equations that describe truss systems, we need a 
relationship between the forces and displacements at each end of a single truss element. Consider 
such an element in the x −y plane as shown in Fig. 12, attached to nodes numbered i and j and 
inclined at an angle θ from the horizontal. 
Considering the elongation vector δ to be resolved in directions along and transverse to the 

element, the elongation in the truss element can be written in terms of the differences in the 
displacements of its end points: 

δ = (uj  cos θ + vj sin θ) − (ui cos θ + vi sin θ) 
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Figure 12: Individual truss element. 

where u and v are the horizontal and vertical components of the deflections, respectively. (The 
displacements at node i drawn in Fig. 12 are negative.) This relation can be written in matrix 
form as: 

⎧ ⎫ ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ � � ⎨ ⎬ viδ = −c −s c s  ⎪ ⎪  ⎪  uj  ⎪  ⎪ ⎪  ⎩ ⎭  vj  

Here c = cos  θ  and s = sin  θ.  

Figure 13: Components of nodal force. 

The axial force P that accompanies the elongation δ is given by Hooke’s law for linear elastic 
bodies as P = (AE/L)δ. The horizontal and vertical nodal forces are shown in Fig. 13; these 
can be written in terms of the total axial force as: 

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎪ ⎪ ⎪ −c ⎪ ⎪ −c ⎪ ⎪ fxi ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ fyi 
⎬ ⎨ −s ⎬ ⎨ −s ⎬ AE 
= P = δ ⎪ ⎪ ⎪ c ⎪ ⎪ c ⎪ L ⎪ fxj ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭fyj s s 

⎧ ⎫ ⎧ ⎫ ⎪ −c ⎪ ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎨ ⎬−s AE vi = −c −s c s  ⎪ c ⎪ L ⎪ ⎪ ⎪ ⎪ ⎪ uj ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ s vj 

Carrying out the matrix multiplication: 

⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎪ ⎪ c2 cs −c2 −cs ⎪ ⎪ ⎪ fxi ⎪ ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎢ 2 2 ⎥⎨ ⎬fyi AE ⎢ cs s −cs −s ⎥ vi = ⎢ 2 2 ⎥ (10) ⎪ ⎪ L ⎣ −c −cs c cs ⎦⎪ ⎪ ⎪ fxj ⎪ ⎪ uj ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 2 2 ⎩ ⎭fyj −cs −s cs s vj 
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The quantity in brackets, multiplied by AE/L, is known as the “element stiffness matrix” 
kij . Each of its terms has a physical significance, representing the contribution of one of the 
displacements to one of the forces. The global system of equations is formed by combining the 
element stiffness matrices from each truss element in turn, so their computation is central to the 
method of matrix structural analysis. The principal difference between the matrix truss method 
and the general finite element method is in how the element stiffness matrices are formed; most 
of the other computer operations are the same. 

Assembly of multiple element contributions 

Figure 14: Element contributions to total nodal force. 

The next step is to consider an assemblage of many truss elements connected by pin joints. 
Each element meeting at a joint, or node, will contribute a force there as dictated by the 
displacements of both that element’s nodes (see Fig. 14). To maintain static equilibrium, all 
element force contributions fi

elem at a given node must sum to the force fi
ext that is externally 

applied at that node: 

f ext = f elem = (  kelem uj ) = (  kelem )uji i ij ij = Kijuj 
elem elem elem 

Each element stiffness matrix kelem is added to the appropriate location of the overall, or “global” ij 
stiffness matrix Kij that relates all of the truss displacements and forces. This process is called 
“assembly.” The index numbers in the above relation must be the “global” numbers assigned 
to the truss structure as a whole. However, it is generally convenient to compute the individual 
element stiffness matrices using a local scheme, and then to have the computer convert to global 
numbers when assembling the individual matrices. 

Example 6 

The assembly process is at the heart of the finite element method, and it is worthwhile to do a simple 
case by hand to see how it really works. Consider the two-element truss problem of Fig. 7, with the 
nodes being assigned arbitrary “global” numbers from 1 to 3. Since each node can in general move in 
two directions, there are 3 × 2 = 6 total degrees of freedom in the problem. The global stiffness matrix 
will then be a 6 × 6 array relating the six displacements to the six externally applied forces. Only one 
of the displacements is unknown in this case, since all but the vertical displacement of node 2 (degree of 
freedom number 4) is constrained to be zero. Figure 15 shows a workable listing of the global numbers, 
and also “local” numbers for each individual element. 
Using the local numbers, the 4×4 element stiffness matrix of each of the two elements can be evaluated 

according to Eqn. 10. The inclination angle is calculated from the nodal coordinates as 

y2 − y1
θ = tan−1  

x2  −  x1  

The resulting matrix for element 1 is: 
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Figure 15: Global and local numbering for the two-element truss. 

⎡ ⎤ 
25.00 − 43.30 − 25.00 43.30 ⎢ ⎥ 

k(1) = 
− 43.30 75.00 43.30 − 75.00 

× 103 ⎢ ⎥ ⎣ − 25.00 43.30 25.00 − 43.30 ⎦ 

43.30 − 75.00 − 43.30 75.00 

and for element 2: ⎡ ⎤ 
25.00 43.30 − 25.00 − 43.30 ⎢ ⎥ 

k(2) = ⎢ 43.30 75.00 − 43.30 − 75.00 ⎥ × 103
⎣ − 25.00 − 43.30 25.00 43.30 ⎦


− 43.30 − 75.00 43.30 75.00


(It is important the units be consistent; here lengths are in inches, forces in pounds, and moduli in psi. 
The modulus of both elements is E = 10 Mpsi and both have area A = 0.1 in2.) These matrices have 
rows and columns numbered from 1 to 4, corresponding to the local degrees of freedom of the element. 
However, each of the local degrees of freedom can be matched to one of the global degrees of the overall 
problem. By inspection of Fig. 15, we can form the following table that maps local to global numbers: 

local global, global, 
element 1 element 2 

1 1 3 
2 2 4 
3 3 5 
4 4 6 

Using this table, we see for instance that the second degree of freedom for element 2 is the fourth degree 
of freedom in the global numbering system, and the third local degree of freedom corresponds to the fifth 
global degree of freedom. Hence the value in the second row and third column of the element stiffness 

(2)
matrix of element 2, denoted k23 , should be added into the position in the fourth row and fifth column 
of the 6 × 6 global stiffness matrix. We write this as 

(2)
k23 −→ K4,5 

Each of the sixteen positions in the stiffness matrix of each of the two elements must be added into the 
global matrix according to the mapping given by the table. This gives the result 

⎡ ⎤ 
(1) (1) (1) (1)
k11 k12 k13 k14 0 0 ⎢ (1) (1) (1) (1) ⎥ ⎢ k21 k22 k23 k24 0 0 ⎥ ⎢ ⎥ ⎢ k(1) k(1) k(1) + k(2) k(1) + k(2) k(2) k(2) ⎥ 

K = ⎢ 31 32 33 11 34 12 13 14 ⎥ ⎢ (1) (1) (1) (2) (1) (2) (2) (2) ⎥k k k + k k + k k k⎢ 41 42 43 21 44 22 23 24 ⎥ ⎢ (2) (2) (2) (2) ⎥ ⎣ 0 0 k31 k32 k33 k34 ⎦ 
(2) (2) (2) (2)

0 0 k41 k42 k43 k44 

This matrix premultiplies the vector of nodal displacements according to Eqn. 9 to yield the vector of 
externally applied nodal forces. The full system equations, taking into account the known forces and 
displacements, are then 
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⎧ ⎫ ⎧ ⎫ ⎡ ⎤ 
25.0 −43.3 −25.0  43.3 0.0 0.00 ⎪ 0 ⎪ ⎪ f1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ −43.3  75.0  43.3  −75.0 0.0 0.00 ⎥⎪ 0 ⎪ ⎪ f2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎨ ⎬ ⎨ ⎬ 

103 ⎢⎢ −25.0  43.3  50.0 0.0 −25.0 −43.30 ⎥⎥ 0
= 

f3 ⎢ 43.3 −75.0 0.0 150.0 −43.3 −75.00 ⎥⎪ u4 ⎪ ⎪ −1732 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎣ 0.0 0.0 −25.0 −43.3  25.0  43.30 ⎦⎪ 0 ⎪ ⎪ f5 ⎪ ⎩ ⎭ ⎩ ⎭ 
0.0 0.0 −43.3 −75.0  43.3  75.00 0 f5 

Note that either the force or the displacement for each degree of freedom is known, with the accompanying 
displacement or force being unknown. Here only one of the displacements (u4) is unknown, but in most 
problems the unknown displacements far outnumber the unknown forces. Note also that only those 
elements that are physically connected to a given node can contribute a force to that node. In most 
cases, this results in the global stiffness matrix containing many zeroes corresponding to nodal pairs that 
are not spanned by an element. Effective computer implementations will take advantage of the matrix 
sparseness to conserve memory and reduce execution time. 
In larger problems the matrix equations are solved for the unknown displacements and forces by 

Gaussian reduction or other techniques. In this two-element problem, the solution for the single unknown 
displacement can be written down almost from inspection. Multiplying out the fourth row of the system, 
we have 

0 + 0 + 0 + 150  ×  103 u4 + 0 + 0 =  −1732 

u4 = −1732/150 × 103 = −0.01155 in 

Now any of the unknown forces can be obtained directly. Multiplying out the first row for instance gives 

0 + 0 + 0 + (43.4)(−0.0115) × 103 + 0 + 0 =  f1  

f1  =  −500 lb 

The negative sign here indicates the horizontal force on global node #1 is to the left, opposite the direction 
assumed in Fig. 15. 

The process of cycling through each element to form the element stiffness matrix, assembling 
the element matrix into the correct positions in the global matrix, solving the equations for 
displacements and then back-multiplying to compute the forces, and printing the results can be 
automated to make a very versatile computer code. 
Larger-scale truss (and other) finite element analysis are best done with a dedicated com­

puter code, and an excellent one for learning the method is available from the web at www­
cse.ucsd.edu/users/atkinson/felt/. This code, named felt, was authored by Jason Gobat and 
Darren Atkinson for educational use, and incorporates a number of novel features to promote 
user-friendliness. Complete information describing this code, as well as the C-language source 
and a number of trial runs and auxiliary code modules is available via their web pages. If you 
have access to X-window workstations, a graphical shell named velvet is available as well. 

Example 7 

To illustrate how this code operates for a somewhat larger problem, consider the six-element truss of 
Fig. 4, analyzed earlier both by the joint-at-a-time free body analysis approach and by Castigliano’s 
method. The truss is redrawn in Fig. 16 by the velvet graphical interface. 
The input dataset, which can be written manually or developed graphically in velvet, employs 

parsing techniques to simplify what can be a very tedious and error-prone step in finite element analysis. 
The dataset for this 6-element truss is: 
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Figure 16: The six-element truss. 

problem description

nodes=5 elements=6


nodes

1 x=0 y=100 z=0 constraint=pin

2 x=100 y=100 z=0 constraint=planar

3 x=200 y=100 z=0 force=P

4 x=0 y=0 z=0 constraint=pin

5 x=100 y=0 z=0 constraint=planar


truss elements

1 nodes=[1,2] material=steel

2 nodes=[2,3]

3 nodes=[4,2]

4 nodes=[2,5]

5 nodes=[5,3]

6 nodes=[4,5]


material properties

steel E=3e+07 A=0.5


distributed loads


constraints

free Tx=u Ty=u Tz=u Rx=u Ry=u Rz=u

pin Tx=c Ty=c Tz=c Rx=u Ry=u Rz=u

planar Tx=u Ty=u Tz=c Rx=u Ry=u Rz=u


forces

P Fy=-1000


end
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-----------------------------------------------------------------------------

-----------------------------------------------------------------------------

-------------------------------------------------------------------------------

-----------------------------------

-----------------------------------

--------------------------

The meaning of these lines should be fairly evident on inspection, although the felt documentation 
should be consulted for more detail. The output produced by felt for these data is: 

** ** 

Nodal Displacements 

Node # DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6 

1 0 0 0 0 0 0

2 0.013333 -0.03219 0 0 0 0

3 0.02 -0.084379 0 0 0 0

4 0 0 0 0 0 0

5 -0.0066667 -0.038856 0 0 0 0


Element Stresses 

1: 4000 
2: 2000 
3: -2828.4 
4: 2000 
5: -2828.4 
6: -2000 

Reaction Forces 

Node # DOF Reaction Force 

1 Tx -2000

1 Ty  0 

1 Tz  0 

2 Tz  0 

3 Tz  0 

4 Tx 2000

4 Ty 1000

4 Tz  0 

5 Tz  0 


Material Usage Summary 

Material: steel 
Number: 6 
Length: 682.8427 
Mass: 0.0000 

Total mass: 0.0000 

Note that the vertical displacement of node 3 (the DOF 2 value) is -0.0844, the same value obtained 
earlier in Example 3. Figure 17 shows the velvet graphical output for the truss deflections (greatly 
magnified). 

Problems 

1. A rigid beam of length L rests on two supports that resist vertical motion, and is loaded 
by a vertical force F a distance  a  from the left support. Draw a free body diagram for 
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Figure 17: The 6-element truss in its original and deformed shape. 

the beam, replacing the supports by the reaction forces R1 and R2 that they exert on the 
beam. Solve for the reaction forces in terms of F , a, and  L.  

Prob. 1 

2.	 A third support is added to the beam of the previous problem. Draw the free-body diagram 
for this case, and write the equilibrium equations available to solve for the reaction forces 
at each support. Is it possible to solve for all the reaction forces? 

Prob. 2 

3. The handles of a pair of pliers are sqeezed with a force F . Draw a free-body diagram for 
one of the pliers’ arms. What is the force exerted on an object gripped between the pliers 
faces? 

4. An object of weight W is suspended from a frame as shown. What is the tension in the 

20 



Prob. 3 

restraining cable AB? 

Prob. 4 

5. (a) – (h) Determine the force in each element of the trusses drawn below. 

6. (a) – (h) Using geometrical considerations, determine the deflection of the loading point 
(the point at which the load is applied, in the direction of the load) for the trusses in 
Prob. 5. All elements are constructed of 20 mm diameter round carbon steel rods. 

7. (a) – (h) Same as Prob. 6, but using Castigliano’s theorem. 

8. (a) – (h) Same as Prob. 6, but using finite element analysis. 

9. Find the element forces and deflection at the loading point for the truss shown, using the 
method of your own choice. 

10. (a) – (c) Write out the global stiffness matrices for the trusses listed below, and solve for 
the unknown forces and displacements. 

11. Two truss elements of equal initial length	L0 are connected horizontally. Assuming the 
elements remain linearly elastic at all strains, determine the downward deflection y as a 
function of a load F applied transversely to the joint. 
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Prob. 5


Prob. 9


Prob. 10


Prob. 11
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