
Finite Element Analysis

David Roylance

Department of Materials Science and Engineering

Massachusetts Institute of Technology

Cambridge, MA 02139

February 28, 2001

Introduction

Finite element analysis (FEA) has become commonplace in recent years, and is now the basis
of a multibillion dollar per year industry. Numerical solutions to even very complicated stress
problems can now be obtained routinely using FEA, and the method is so important that even
introductory treatments of Mechanics of Materials – such as these modules – should outline its
principal features.
In spite of the great power of FEA, the disadvantages of computer solutions must be kept in

mind when using this and similar methods: they do not necessarily reveal how the stresses are
influenced by important problem variables such as materials properties and geometrical features,
and errors in input data can produce wildly incorrect results that may be overlooked by the
analyst. Perhaps the most important function of theoretical modeling is that of sharpening the
designer’s intuition; users of finite element codes should plan their strategy toward this end,
supplementing the computer simulation with as much closed-form and experimental analysis as
possible.
Finite element codes are less complicated than many of the word processing and spreadsheet

packages found on modern microcomputers. Nevertheless, they are complex enough that most
users do not find it effective to program their own code. A number of prewritten commercial
codes are available, representing a broad price range and compatible with machines from mi­
crocomputers to supercomputers1 . However, users with specialized needs should not necessarily
shy away from code development, and may find the code sources available in such texts as that
by Zienkiewicz2 to be a useful starting point. Most finite element software is written in Fortran,
but some newer codes such as felt are in C or other more modern programming languages.
In practice, a finite element analysis usually consists of three principal steps:

1.	 Preprocessing: The user constructs a model of the part to be analyzed in which the geom­
etry is divided into a number of discrete subregions, or “elements,” connected at discrete
points called “nodes.” Certain of these nodes will have fixed displacements, and others
will have prescribed loads. These models can be extremely time consuming to prepare,
and commercial codes vie with one another to have the most user-friendly graphical “pre­
processor” to assist in this rather tedious chore. Some of these preprocessors can overlay
a mesh on a preexisting CAD file, so that finite element analysis can be done conveniently
as part of the computerized drafting-and-design process.

1C.A. Brebbia, ed., Finite Element Systems, A Handbook, Springer-Verlag, Berlin, 1982.
2O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, McGraw-Hill Co., London, 1989.

1

2.	 Analysis: The dataset prepared by the preprocessor is used as input to the finite element
code itself, which constructs and solves a system of linear or nonlinear algebraic equations

Kijuj = fi

where u and f are the displacements and externally applied forces at the nodal points. The
formation of the K matrix is dependent on the type of problem being attacked, and this
module will outline the approach for truss and linear elastic stress analyses. Commercial
codes may have very large element libraries, with elements appropriate to a wide range
of problem types. One of FEA’s principal advantages is that many problem types can be
addressed with the same code, merely by specifying the appropriate element types from
the library.

3.	 Postprocessing: In the earlier days of finite element analysis, the user would pore through
reams of numbers generated by the code, listing displacements and stresses at discrete
positions within the model. It is easy to miss important trends and hot spots this way,
and modern codes use graphical displays to assist in visualizing the results. A typical
postprocessor display overlays colored contours representing stress levels on the model,
showing a full-field picture similar to that of photoelastic or moire experimental results.

The operation of a specific code is usually detailed in the documentation accompanying the
software, and vendors of the more expensive codes will often offer workshops or training sessions
as well to help users learn the intricacies of code operation. One problem users may have even
after this training is that the code tends to be a “black box” whose inner workings are not
understood. In this module we will outline the principles underlying most current finite element
stress analysis codes, limiting the discussion to linear elastic analysis for now. Understanding
this theory helps dissipate the black-box syndrome, and also serves to summarize the analytical
foundations of solid mechanics.

Matrix analysis of trusses

Pin-jointed trusses, discussed more fully in Module 5, provide a good way to introduce FEA
concepts. The static analysis of trusses can be carried out exactly, and the equations of even
complicated trusses can be assembled in a matrix form amenable to numerical solution. This
approach, sometimes called “matrix analysis,” provided the foundation of early FEA develop­
ment.
Matrix analysis of trusses operates by considering the stiffness of each truss element one

at a time, and then using these stiffnesses to determine the forces that are set up in the truss
elements by the displacements of the joints, usually called “nodes” in finite element analysis.
Then noting that the sum of the forces contributed by each element to a node must equal the
force that is externally applied to that node, we can assemble a sequence of linear algebraic
equations in which the nodal displacements are the unknowns and the applied nodal forces are
known quantities. These equations are conveniently written in matrix form, which gives the
method its name: ⎧ ⎫ ⎧ ⎫

K11 K12 K1n ⎪ ⎪ ⎪ ⎪
⎡	 ⎤

· · · ⎪ u1 ⎪ ⎪ f1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎢	 ⎥⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎨ ⎬ ⎢	 K21 K22 · · · K2n ⎥ u2 f2 ⎢	 ⎥ ⎢ ⎥ . = ⎪ . ⎪ ⎪ . ⎪ ⎣ ⎦⎪ . ⎪ ⎪ . ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭Kn1 Kn2 · · · Knn un fn

2

Here ui and fj indicate the deflection at the ith node and the force at the jth node (these
would actually be vector quantities, with subcomponents along each coordinate axis). The Kij
coefficient array is called the global stiffness matrix, with the ij component being physically the
influence of the jth displacement on the ith force. The matrix equations can be abbreviated as

Kij uj = fi or Ku = f (1)

using either subscripts or boldface to indicate vector and matrix quantities.
Either the force externally applied or the displacement is known at the outset for each node,

and it is impossible to specify simultaneously both an arbitrary displacement and a force on a
given node. These prescribed nodal forces and displacements are the boundary conditions of
the problem. It is the task of analysis to determine the forces that accompany the imposed
displacements, and the displacements at the nodes where known external forces are applied.

Stiffness matrix for a single truss element

As a first step in developing a set of matrix equations that describe truss systems, we need a
relationship between the forces and displacements at each end of a single truss element. Consider
such an element in the x − y plane as shown in Fig. 1, attached to nodes numbered i and j and
inclined at an angle θ from the horizontal.

Figure 1: Individual truss element.

Considering the elongation vector δ to be resolved in directions along and transverse to the
element, the elongation in the truss element can be written in terms of the differences in the
displacements of its end points:

δ = (uj cos θ + vj sin θ) − (ui cos θ + vi sin θ)

where u and v are the horizontal and vertical components of the deflections, respectively. (The
displacements at node i drawn in Fig. 1 are negative.) This relation can be written in matrix
form as: ⎧ ⎫ ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ � � ⎨ ⎬ viδ = −c −s c s ⎪ uj ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ vj

Here c = cos θ and s = sin θ.
The axial force P that accompanies the elongation δ is given by Hooke’s law for linear elastic

bodies as P = (AE/L)δ. The horizontal and vertical nodal forces are shown in Fig. 2; these can
be written in terms of the total axial force as:

3

� �

Figure 2: Components of nodal force.

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎪ fxi ⎪ ⎪ −c ⎪ ⎪ −c ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬fyi −s −s AE
= P = δ ⎪ fxj ⎪ ⎪ c ⎪ ⎪ c ⎪ L ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭fyj s s ⎧ ⎫ ⎧ ⎫ ⎪ −c ⎪ ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ AE ⎨ ⎬−s vi = −c −s c s ⎪ c ⎪ L ⎪ uj ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ s vj

Carrying out the matrix multiplication:

⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎪ fxi ⎪ c2 cs −c2 −cs ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎢ 2 2 ⎥⎨ ⎬fyi =
AE ⎢⎢

cs
2

s −cs
2
−s ⎥⎥

vi (2) ⎪ ⎪ L ⎣ −c −cs c cs ⎦⎪ uj ⎪ ⎪ fxj ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 2 2 ⎩ ⎭fyj −cs −s cs s vj

The quantity in brackets, multiplied by AE/L, is known as the “element stiffness matrix”
kij . Each of its terms has a physical significance, representing the contribution of one of the
displacements to one of the forces. The global system of equations is formed by combining the
element stiffness matrices from each truss element in turn, so their computation is central to the
method of matrix structural analysis. The principal difference between the matrix truss method
and the general finite element method is in how the element stiffness matrices are formed; most
of the other computer operations are the same.

Assembly of multiple element contributions

Figure 3: Element contributions to total nodal force.

The next step is to consider an assemblage of many truss elements connected by pin joints.
Each element meeting at a joint, or node, will contribute a force there as dictated by the
displacements of both that element’s nodes (see Fig. 3). To maintain static equilibrium, all

4

� � �

element force contributions fi
elem at a given node must sum to the force fi

ext that is externally
applied at that node:

f ext f elem kelem kelem
i = i = (ij uj) = (ij)uj = Kijuj

elem elem elem

Each element stiffness matrix kelem is added to the appropriate location of the overall, or “global” ij
stiffness matrix Kij that relates all of the truss displacements and forces. This process is called
“assembly.” The index numbers in the above relation must be the “global” numbers assigned
to the truss structure as a whole. However, it is generally convenient to compute the individual
element stiffness matrices using a local scheme, and then to have the computer convert to global
numbers when assembling the individual matrices.

Example 1

The assembly process is at the heart of the finite element method, and it is worthwhile to do a simple
case by hand to see how it really works. Consider the two-element truss problem of Fig. 4, with the
nodes being assigned arbitrary “global” numbers from 1 to 3. Since each node can in general move in
two directions, there are 3 × 2 = 6 total degrees of freedom in the problem. The global stiffness matrix
will then be a 6 × 6 array relating the six displacements to the six externally applied forces. Only one
of the displacements is unknown in this case, since all but the vertical displacement of node 2 (degree of
freedom number 4) is constrained to be zero. Figure 4 shows a workable listing of the global numbers,
and also “local” numbers for each individual element.

Figure 4: Global and local numbering for the two-element truss.

Using the local numbers, the 4×4 element stiffness matrix of each of the two elements can be evaluated
according to Eqn. 2. The inclination angle is calculated from the nodal coordinates as

y2 − y1
θ = tan−1

x2 − x1

The resulting matrix for element 1 is: ⎡ ⎤
25.00 −43.30 −25.00 43.30

k(1) = ⎢⎢ −43.30 75.00 43.30 −75.00 ⎥⎥
× 103 ⎣ −25.00 43.30 25.00 −43.30 ⎦

43.30 −75.00 −43.30 75.00

and for element 2: ⎡ ⎤
25.00 43.30 −25.00 −43.30

k(2) = ⎢⎢ 43.30 75.00 −43.30 −75.00 ⎥⎥
× 103 ⎣ −25.00 −43.30 25.00 43.30 ⎦

−43.30 −75.00 43.30 75.00

(It is important the units be consistent; here lengths are in inches, forces in pounds, and moduli in psi.
The modulus of both elements is E = 10 Mpsi and both have area A = 0.1 in2.) These matrices have
rows and columns numbered from 1 to 4, corresponding to the local degrees of freedom of the element.

5

However, each of the local degrees of freedom can be matched to one of the global degrees of the overall
problem. By inspection of Fig. 4, we can form the following table that maps local to global numbers:

local global, global,
element 1 element 2

1 1 3
2 2 4
3 3 5
4 4 6

Using this table, we see for instance that the second degree of freedom for element 2 is the fourth degree
of freedom in the global numbering system, and the third local degree of freedom corresponds to the fifth
global degree of freedom. Hence the value in the second row and third column of the element stiffness
matrix of element 2, denoted k(2), should be added into the position in the fourth row and fifth column 23
of the 6 × 6 global stiffness matrix. We write this as

(2)
k23 −→ K4,5

Each of the sixteen positions in the stiffness matrix of each of the two elements must be added into the
global matrix according to the mapping given by the table. This gives the result ⎡ ⎤

(1) (1) (1) (1)
k11 k12 k13 k14 0 0 ⎢ (1) (1) (1) (1) ⎥ ⎢ k21 k22 k23 k24 0 0 ⎥ ⎢ ⎥ ⎢ k(1) k(1) k(1) + k(2) k(1) + k(2) k(2) k(2) ⎥ ⎢ 31 32 33 11 34 12 13 14 ⎥K = ⎢ k(1) k(1) k(1) + k(2) k(1) + k(2) k(2) k(2) ⎥ ⎢ 41 42 43 21 44 22 23 24 ⎥ ⎢ (2) (2) (2) (2) ⎥ ⎣ 0 0 k31 k32 k33 k34 ⎦

(2) (2) (2) (2)
0 0 k41 k42 k43 k44

This matrix premultiplies the vector of nodal displacements according to Eqn. 1 to yield the vector of
externally applied nodal forces. The full system equations, taking into account the known forces and
displacements, are then ⎧ ⎫ ⎧ ⎫ ⎡ ⎤

25.0 −43.3 −25.0 43.3 0.0 0.00 ⎪ 0 ⎪ ⎪ f1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ −43.3 75.0 43.3 −75.0 0.0 0.00 ⎥⎪ 0 ⎪ ⎪ f2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎨ ⎬ ⎨ ⎬
3 ⎢ −25.0 43.3 50.0 0.0 −25.0 −43.30 ⎥ 0 f3

10 ⎢ ⎥ = ⎢ 43.3 −75.0 0.0 150.0 −43.3 −75.00 ⎥⎪ u4 ⎪ ⎪ −1732 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎣ 0.0 0.0 −25.0 −43.3 25.0 43.30 ⎦⎪ 0 ⎪ ⎪ f5 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭
0.0 0.0 −43.3 −75.0 43.3 75.00 0 f5

Note that either the force or the displacement for each degree of freedom is known, with the accompanying
displacement or force being unknown. Here only one of the displacements (u4) is unknown, but in most
problems the unknown displacements far outnumber the unknown forces. Note also that only those
elements that are physically connected to a given node can contribute a force to that node. In most
cases, this results in the global stiffness matrix containing many zeroes corresponding to nodal pairs that
are not spanned by an element. Effective computer implementations will take advantage of the matrix
sparseness to conserve memory and reduce execution time.
In larger problems the matrix equations are solved for the unknown displacements and forces by

Gaussian reduction or other techniques. In this two-element problem, the solution for the single unknown
displacement can be written down almost from inspection. Multiplying out the fourth row of the system,
we have

0 + 0 + 0 + 150 × 103 u4 + 0 + 0 = − 1732

u4 = − 1732/150 × 103 = − 0.01155 in

Now any of the unknown forces can be obtained directly. Multiplying out the first row for instance gives

6

0 + 0 + 0 + (43.4)(−0.0115) × 103 + 0 + 0 = f1

f1 = −500 lb

The negative sign here indicates the horizontal force on global node #1 is to the left, opposite the direction

assumed in Fig. 4.

The process of cycling through each element to form the element stiffness matrix, assembling
the element matrix into the correct positions in the global matrix, solving the equations for
displacements and then back-multiplying to compute the forces, and printing the results can be
automated to make a very versatile computer code.
Larger-scale truss (and other) finite element analysis are best done with a dedicated computer

code, and an excellent one for learning the method is available from the web at
http://felt.sourceforge.net/. This code, named felt, was authored by Jason Gobat and
Darren Atkinson for educational use, and incorporates a number of novel features to promote
user-friendliness. Complete information describing this code, as well as the C-language source
and a number of trial runs and auxiliary code modules is available via their web pages. If you
have access to X-window workstations, a graphical shell named velvet is available as well.

Example 2

Figure 5: The six-element truss, as developed in the velvet/felt FEA graphical interface.

To illustrate how this code operates for a somewhat larger problem, consider the six-element truss of
Fig. 5, which was analyzed in Module 5 both by the joint-at-a-time free body analysis approach and by
Castigliano’s method.
The input dataset, which can be written manually or developed graphically in velvet, employs

parsing techniques to simplify what can be a very tedious and error-prone step in finite element analysis.
The dataset for this 6-element truss is:

problem description
nodes=5 elements=6

nodes
1 x=0 y=100 z=0 constraint=pin

7

http://felt.sourceforge.net/

2 x=100 y=100 z=0 constraint=planar

3 x=200 y=100 z=0 force=P

4 x=0 y=0 z=0 constraint=pin

5 x=100 y=0 z=0 constraint=planar

truss elements

1 nodes=[1,2] material=steel

2 nodes=[2,3]

3 nodes=[4,2]

4 nodes=[2,5]

5 nodes=[5,3]

6 nodes=[4,5]

material properties

steel E=3e+07 A=0.5

distributed loads

constraints

free Tx=u Ty=u Tz=u Rx=u Ry=u Rz=u

pin Tx=c Ty=c Tz=c Rx=u Ry=u Rz=u

planar Tx=u Ty=u Tz=c Rx=u Ry=u Rz=u

forces

P Fy=-1000

end

The meaning of these lines should be fairly evident on inspection, although the felt documentation
should be consulted for more detail. The output produced by felt for these data is:

** **

Nodal Displacements

Node # DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6

1 0 0 0 0 0 0

2 0.013333 -0.03219 0 0 0 0

3 0.02 -0.084379 0 0 0 0

4 0 0 0 0 0 0

5 -0.0066667 -0.038856 0 0 0 0

Element Stresses

1: 4000
2: 2000
3: -2828.4
4: 2000
5: -2828.4
6: -2000

Reaction Forces

Node # DOF Reaction Force

8

1 Tx -2000
1 Ty 0
1 Tz 0
2 Tz 0
3 Tz 0
4 Tx 2000
4 Ty 1000
4 Tz 0
5 Tz 0

Material Usage Summary

Material: steel
Number: 6
Length: 682.8427
Mass: 0.0000

Total mass: 0.0000

The vertical displacement of node 3 (the DOF 2 value) is -0.0844, the same value obtained by the
closed-form methods of Module 5. Figure 6 shows the velvet graphical output for the truss deflections
(greatly magnified).

Figure 6: The 6-element truss in its original and deformed shape.

General Stress Analysis

The element stiffness matrix could be formed exactly for truss elements, but this is not the case
for general stress analysis situations. The relation between nodal forces and displacements are
not known in advance for general two- or three-dimensional stress analysis problems, and an
approximate relation must be used in order to write out an element stiffness matrix.
In the usual “displacement formulation” of the finite element method, the governing equa­

tions are combined so as to have only displacements appearing as unknowns; this can be done by
using the Hookean constitutive equations to replace the stresses in the equilibrium equations by
the strains, and then using the kinematic equations to replace the strains by the displacements.
This gives

LTσ = LTD� = LTDLu = 0 (3)

9

Of course, it is often impossible to solve these equations in closed form for the irregular bound­
ary conditions encountered in practical problems. However, the equations are amenable to
discretization and solution by numerical techniques such as finite differences or finite elements.
Finite element methods are one of several approximate numerical techniques available for

the solution of engineering boundary value problems. Problems in the mechanics of materials
often lead to equations of this type, and finite element methods have a number of advantages
in handling them. The method is particularly well suited to problems with irregular geometries
and boundary conditions, and it can be implemented in general computer codes that can be
used for many different problems.
To obtain a numerical solution for the stress analysis problem, let us postulate a function

ũ(x, y) as an approximation to u:

ũ(x, y) ≈ u(x, y) (4)

Many different forms might be adopted for the approximation ũ. The finite element method
discretizes the solution domain into an assemblage of subregions, or “elements,” each of which has
its own approximating functions. Specifically, the approximation for the displacement ũ(x, y)
within an element is written as a combination of the (as yet unknown) displacements at the
nodes belonging to that element:

ũ(x, y) = Nj (x, y)uj (5)

Here the index j ranges over the element’s nodes, uj are the nodal displacements, and the Nj are
“interpolation functions.” These interpolation functions are usually simple polynomials (gen­
erally linear, quadratic, or occasionally cubic polynomials) that are chosen to become unity at
node j and zero at the other element nodes. The interpolation functions can be evaluated at any
position within the element by means of standard subroutines, so the approximate displacement
at any position within the element can be obtained in terms of the nodal displacements directly
from Eqn. 5.

Figure 7: Interpolation in one dimension.

The interpolation concept can be illustrated by asking how we might guess the value of a
function u(x) at an arbitrary point x located between two nodes at x = 0 and x = 1, assuming
we know somehow the nodal values u(0) and u(1). We might assume that as a reasonable
approximation u(x) simply varies linearly between these two values as shown in Fig. 7, and
write

u(x) ≈ ũ(x) = u0 (1 − x) + u1 (x)

or

10

�

�

�

� � �

N0(x) = (1 − x)
ũ(x) = u0 N0(x) + u1 N1(x), N1(x) = x

Here the N0 and N1 are the linear interpolation functions for this one-dimensional approxima­
tion. Finite element codes have subroutines that extend this interpolation concept to two and
three dimensions.
Approximations for the strain and stress follow directly from the displacements:

�̃ = Lũ = LNj uj ≡ Bj uj (6)

σ̃ = D�̃ = DBj uj (7)

where Bj (x, y) = LNj (x, y) is an array of derivatives of the interpolation functions: ⎡ ⎤
Nj,x 0

Bj = ⎢ ⎣ 0 Nj,y
⎥ ⎦ (8)

Nj,y Nj,x

A “virtual work” argument can now be invoked to relate the nodal displacement uj appearing
at node j to the forces applied externally at node i: if a small, or “virtual,” displacement δui is
superimposed on node i, the increase in strain energy δU within an element connected to that
node is given by:

δU = δ�T σ dV (9)
V

where V is the volume of the element. Using the approximate strain obtained from the inter­
polated displacements, δ�̃ = Biδui is the approximate virtual increase in strain induced by the
virtual nodal displacement. Using Eqn. 7 and the matrix identity (AB)T = BTAT , we have:

δU = δui
T Bi

T DBj dV uj (10)
V

(The nodal displacements δuTi and uj are not functions of x and y, and so can be brought from
inside the integral.) The increase in strain energy δU must equal the work done by the nodal
forces; this is:

δW = δui
T fi (11)

Equating Eqns. 10 and 11 and canceling the common factor δui
T , we have:

BTi DBj dV uj = fi (12)
V

This is of the desired form kij uj = fi, where kij =
�
V B

T
i DBj dV is the element stiffness.

Finally, the integral in Eqn. 12 must be replaced by a numerical equivalent acceptable to the
computer. Gauss-Legendre numerical integration is commonly used in finite element codes for
this purpose, since that technique provides a high ratio of accuracy to computing effort. Stated
briefly, the integration consists of evaluating the integrand at optimally selected integration
points within the element, and forming a weighted summation of the integrand values at these
points. In the case of integration over two-dimensional element areas, this can be written:

11

� �
f(x, y) dA ≈ f (xl, yl)wl (13)

A l

The location of the sampling points xl, yl and the associated weights wl are provided by
standard subroutines. In most modern codes, these routines map the element into a convenient
shape, determine the integration points and weights in the transformed coordinate frame, and
then map the results back to the original frame. The functions Nj used earlier for interpolation
can be used for the mapping as well, achieving a significant economy in coding. This yields what
are known as “numerically integrated isoparametric elements,” and these are a mainstay of the
finite element industry.
Equation 12, with the integral replaced by numerical integrations of the form in Eqn. 13, is

the finite element counterpart of Eqn. 3, the differential governing equation. The computer will
carry out the analysis by looping over each element, and within each element looping over the
individual integration points. At each integration point the components of the element stiffness
matrix kij are computed according to Eqn. 12, and added into the appropriate positions of the
Kij global stiffness matrix as was done in the assembly step of matrix truss method described in
the previous section. It can be appreciated that a good deal of computation is involved just in
forming the terms of the stiffness matrix, and that the finite element method could never have
been developed without convenient and inexpensive access to a computer.

Stresses around a circular hole

We have considered the problem of a uniaxially loaded plate containing a circular hole in previous
modules, including the theoretical Kirsch solution (Module 16) and experimental determinations
using both photoelastic and moire methods (Module 17). This problem is of practical importance
—- for instance, we have noted the dangerous stress concentration that appears near rivet holes
— and it is also quite demanding in both theoretical and numerical analyses. Since the stresses
rise sharply near the hole, a finite element grid must be refined there in order to produce
acceptable results.

Figure 8: Mesh for circular-hole problem.

Figure 8 shows a mesh of three-noded triangular elements developed by the felt-velvet

12

graphical FEA package that can be used to approximate the displacements and stresses around
a uniaxially loaded plate containing a circular hole. Since both theoretical and experimental
results for this stress field are available as mentioned above, the circular-hole problem is a good
one for becoming familiar with code operation.
The user should take advantage of symmetry to reduce problem size whenever possible, and

in this case only one quadrant of the problem need be meshed. The center of the hole is kept
fixed, so the symmetry requires that nodes along the left edge be allowed to move vertically
but not horizontally. Similarly, nodes along the lower edge are constrained vertically but left
free to move horizontally. Loads are applied to the nodes along the upper edge, with each load
being the resultant of the far-field stress acting along half of the element boundaries between
the given node and its neighbors. (The far-field stress is taken as unity.) Portions of the felt
input dataset for this problem are:

problem description
nodes=76 elements=116

nodes
1 x=1 y=-0 z=0 constraint=slide_x
2 x=1.19644 y=-0 z=0
3 x=0.984562 y=0.167939 z=0 constraint=free
4 x=0.940634 y=0.335841 z=0
5 x=1.07888 y=0.235833 z=0
.

.

.

72 x=3.99602 y=3.01892 z=0
73 x=3.99602 y=3.51942 z=0
74 x=3.33267 y=4 z=0
75 x=3.57706 y=3.65664 z=0
76 x=4 y=4 z=0

CSTPlaneStress elements
1 nodes=[13,12,23] material=steel
2 nodes=[67,58,55]
6 nodes=[50,41,40]
.

.

.

7 nodes=[68,67,69] load=load_case_1
8 nodes=[68,58,67]
9 nodes=[57,58,68] load=load_case_1
10 nodes=[57,51,58]
11 nodes=[52,51,57] load=load_case_1
12 nodes=[37,39,52] load=load_case_1
13 nodes=[39,51,52]
.

.

.

116 nodes=[2,3,1]

material properties

steel E=2.05e+11 nu=0.33 t=1

distributed loads

load_case_1 color=red direction=GlobalY values=(1,1) (3,1)

13

constraints
free Tx=u Ty=u Tz=u Rx=u Ry=u Rz=u
slide_x color=red Tx=u Ty=c Tz=c Rx=u Ry=u Rz=u
slide_y color=red Tx=c Ty=u Tz=c Rx=u Ry=u Rz=u

end

The y-displacements and vertical stresses σy are contoured in Fig. 9(a) and (b) respectively;
these should be compared with the photoelastic and moire analyses given in Module 17, Figs. 8
and 10(a). The stress at the integration point closest to the x-axis at the hole is computed
to be σy,max = 3.26, 9% larger than the theoretical value of 3.00. In drawing the contours of
Fig. 9b, the postprocessor extrapolated the stresses to the nodes by fitting a least-squares plane
through the stresses at all four integration points within the element. This produces an even
higher value for the stress concentration factor, 3.593. The user must be aware that graphical
postprocessors smooth results that are themselves only approximations, so numerical inaccuracy
is a real possibility. Refining the mesh, especially near the region of highest stress gradient at
the hole meridian, would reduce this error.

Figure 9: Vertical displacements (a) and stresses (b) as computed for the mesh of Fig. 8.

Problems

1. (a) – (h) Use FEA to determine the force in each element of the trusses drawn below.

2. (a)	 – (c) Write out the global stiffness matrices for the trusses listed below, and solve
for the unknown forces and displacements. For each element assume E = 30 Mpsi and
A = 0.1 in2 .

3. Obtain a plane-stress finite element solution for a cantilevered beam with a single load at
the free end. Use arbitrarily chosen (but reasonable) dimensions and material properties.
Plot the stresses σx and τxy as functions of y at an arbitrary station along the span; also
plot the stresses given by the elementary theory of beam bending (c.f. Module 13) and
assess the magnitude of the numerical error.

4. Repeat the previous problem, but with a symmetrically-loaded beam in three-point bend­
ing.

14

Prob. 1

Prob. 2

5. Use axisymmetric elements to obtain a finite element solution for the radial stress in a
thick-walled pressure vessel (using arbitrary geometry and material parameters). Compare
the results with the theoretical solution (c.f. Prob. 2 in Module 16).

15

Prob. 3

Prob. 4

16

