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Introduction 

In our overview of the tensile stress-strain curve in Module 4, we described yield as a permanent 
molecular rearrangement that begins at a sufficiently high stress, denoted σY in Fig. 1. The 
yielding process is very material-dependent, being related directly to molecular mobility. It is 
often possible to control the yielding process by optimizing the materials processing in a way 
that influences mobility. General purpose polystyrene, for instance, is a weak and brittle plastic 
often credited with giving plastics a reputation for shoddiness that plagued the industry for 
years. This occurs because polystyrene at room temperature has so little molecular mobility 
that it experiences brittle fracture at stresses less than those needed to induce yield with its 
associated ductile flow. But when that same material is blended with rubber particles of suitable 
size and composition, it becomes so tough that it is used for batting helmets and ultra-durable 
children’s toys. This magic is done by control of the yielding process. Yield control to balance 
strength against toughness is one of the most important aspects of materials engineering for 
structural applications, and all engineers should be aware of the possibilities. 

Figure 1: Yield stress σY as determined by the 0.2% offset method. 

Another important reason for understanding yield is more prosaic: if the material is not 
allowed to yield, it is not likely to fail. This is not true of brittle materials such as ceramics that 
fracture before they yield, but in most of the tougher structural materials no damage occurs 
before yield. It is common design practice to size the structure so as to keep the stresses in the 
elastic range, short of yield by a suitable safety factor. We therefore need to be able to predict 
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when yielding will occur in general multidimensional stress states, given an experimental value 
of σY . 

Fracture is driven by normal stresses, acting to separate one atomic plane from another. 
Yield, conversely, is driven by shearing stresses, sliding one plane along another. These two 
distinct mechanisms are illustrated n Fig. 2. Of course, bonds must be broken during the sliding 
associated with yield, but unlike in fracture are allowed to reform in new positions. This process 
can generate substantial change in the material, even leading eventually to fracture (as in bending 
a metal rod back and forth repeatedly to break it). The “plastic” deformation that underlies 
yielding is essentially a viscous flow process, and follows kinetic laws quite similar to liquids. 
Like flow in liquids, plastic flow usually takes place without change in volume, corresponding to 
Poisson’s ratio ν = 1/2. 

Figure 2: Cracking is caused by normal stresses (a), sliding is caused by shear stresses (b). 

Multiaxial stress states 

The yield stress σY is usually determined in a tensile test, where a single uniaxial stress acts. 
However, the engineer must be able to predict when yield will occur in more complicated real-life 
situations involving multiaxial stresses. This is done by use of a yield criterion, an observation 
derived from experimental evidence as to just what it is about the stress state that causes yield. 
One of the simplest of these criteria, known as the maximum shear stress or Tresca criterion, 
states that yield occurs when the maximum shear stress reaches a critical value τmax = k. The  
numerical value of k for a given material could be determined directly in a pure-shear test, such 
as torsion of a circular shaft, but it can also be found indirectly from the tension test as well. As 
shown in Fig. 3, Mohr’s circle shows that the maximum shear stress acts on a plane 45◦ away 
from the tensile axis, and is half the tensile stress in magnitude; then k = σY /2. 

In cases of plane stress, Mohr’s circle gives the maximum shear stress in that plane as half 
the difference of the principal stresses: 

σp1 − σp2
τmax = (1)

2 
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Figure 3: Mohr’s circle construction for yield in uniaxial tension. 

Example 1 

Using σp1 = σθ = pr/b and σp2 = σz = pr/2b in Eqn. 1, the shear stress in a cylindrical pressure vessel 
with closed ends is1 

1 pr pr pr
τmax,θz = − = 

2 b 2b 4b 
where the θz subscript indicates a shear stress in a plane tangential to the vessel wall. Based on this, we 
might expect the pressure vessel to yield when 

σY
τmax,θz = k = 

2 
which would occur at a pressure of 

4bτmax,θz ? 2bσY 
pY = = 

r r 
However, this analysis is in error, as can be seen by drawing Mohr’s circles not only for the θz plane but 
for the θr and rz planes as well as shown in Fig. 4. 

Figure 4: Principal stresses and Mohr’s circle for closed-end pressure vessel 

The shear stresses in the θr plane are  seen  to  be  twice those  in  the  θz plane, since in the θr plane 
the second principal stress is zero: 

1 pr pr
τmax,θr = − 0 = 

2 b 2b 
Yield will therefore occur in the θr plane at a pressure of b σY /r, half the value needed to cause yield in 
the θz plane. Failing to consider the shear stresses acting in this third direction would lead to a seriously 
underdesigned vessel. 

Situations similar to this example occur in plane stress whenever the principal stresses in the 
xy plane are of the same sign (both tensile or both compressive). The maximum shear stress, 

See Module 6. 
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which controls yield, is half the difference between the principal stresses; if they are both of the 
same sign, an even larger shear stress will occur on the perpendicular plane containing the larger 
of the principal stresses in the xy plane. 

This concept can be used to draw a “yield locus” as shown in Fig. 5, an envelope in σ1-σ2 
coordinates outside of which yield is predicted. This locus obviously crosses the coordinate 
axes at values corresponding to the tensile yield stress σY . In the I and III quadrants the 
principal stresses are of the same sign, so according to the maximum shear stress criterion yield 
is determined by the difference between the larger principal stress and zero. In the II and IV 
quadrants the  locus  is given  by  τmax = |σ1 −σ2|/2 =  σY /2, so σ1 −σ2 = const; this gives straight 
diagonal lines running from σY on one axis to σY on the other. 

Figure 5: Yield locus for the maximum-shear stress criterion.


Example 2 

Figure 6: (a) Circular shaft subjected to simultaneous twisting and tension. (b) Mohr’s circle 
construction. 

A circular shaft is subjected to a torque of half that needed to cause yielding as shown in Fig. 6; we now 
ask what tensile stress could be applied simultaneously without causing yield. 
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A Mohr’s circle is drawn with shear stress τ = k/2 and unknown tensile stress σ. Using the Tresca 
maximum-shear yield criterion, yield will occur when σ is such that 

� �2� �2σ k 
τmax = k = + 

2 2 

√ 
σ = 3 k 

The Tresca criterion is convenient to use in practice, but a somewhat better fit to experi­
mental data can often be obtained from the “von Mises” criterion, in which the driving force for 
yield is the strain energy associated with the deviatoric components of stress. The von Mises 
stress (also called the equivalent or effective stress) is defined as 

1 
σM = [(σx − σy)2 + (σx − σz)2 + (σy − σz)2 + 6(τxy + τyz + τxz)]

2 
In terms of the principal stresses this is 

1 
σM = [(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2]

2 
where the stress differences in parentheses are proportional to the maximum shear stresses on 
the three principal planes2 . (Since the quantities are squared, the order of stresses inside the 
parentheses is unimportant.) The Mises stress can also be written in compact form in terms of 
the second invariant of the deviatoric stress tensor Σij: 

σM = 3ΣijΣij/2  (2)  

It can be shown that this is proportional to the total distortional strain energy in the material, 
and also to the shear stress τoct on the “octahedral” plane oriented equally to the 1-2-3 axes. 
The von Mises stress is the driving force for damage in many ductile engineering materials, and 
is routinely computed by most commercial finite element stress analysis codes. 

The value of von Mises stress σM,Y needed to cause yield can be determined from the tensile 
yield stress σY , since in tension at the yield point we have σ1 = σY , σ2 = σ3 = 0.  Then  

1 
σM,Y = [(σY − 0)2 + (σY − 0)2 + (0  − 0)2] =  σY

2 
Hence the value of von Mises stress needed to cause yield is the same as the simple tensile yield 
stress. 

The shear yield stress k can similarly be found by inserting the principal stresses corre­
sponding to a state of pure shear in the Mises equation. Using k = σ1 = −σ3 and σ2 = 0,  we  
have 

1 
2 
[(k − 0)2 + (k + k)2 + (0  − k)2] =  

6k2 

2 
= σY 

k = 
σY√ 
3 

Some authors use a factor other than 1/2 within the radical. This is immaterial, since it will be absorbed by 
the calculation of the critical value of σM . 
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Note that this result is different than the Tresca case, in which we had k = σY /2. 
The von Mises criterion can be plotted as a yield locus as well. Just as the Tresca criterion, 

it must pass through σY on each axis. However, it plots as an ellipse rather than the prismatic 
shape of the Tresca criterion (see Fig. 7). 

Figure 7: Yield locus for the von Mises criterion. 

Effect of hydrostatic pressure 

Since in the discussion up to now yield has been governed only by shear stress, it has not 
mattered whether a uniaxial stress is compressive or tensile; yield occurs when σ = ±σY . This  
corresponds to the hydrostatic component of the stress −p = (σx +σy +σz)/3 having no influence 
on yield, which is observed experimentally to be valid for slip in metallic systems. Polymers, 
however, are much more resistant to yielding in compressive stress states than in tension. The 
atomistic motions underlying slip in polymers can be viewed as requiring “free volume” as the 
molecular segments move, and this free volume is diminished by compressive stresses. It is thus 
difficult to form solid polymers by deformation processing such as stamping and forging in the 
same way steel can be shaped; this is one reason the vast majority of automobile body panels 
continue to be made of steel rather than plastic. 

Figure 8: Effect of pressure on the von Mises yield envelope.
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This dependency on hydrostatic stress can be modeled by modifying the yield criterion to 
state that yield occurs when 

τmax or σM ≥ τ0 + Ap (3) 

where τ0 and A are constants. As p increases (the hydrostatic component of stress becomes 
more positive) the shear stress needed for yield becomes greater as well, since there is less free 
volume and more hindrance to molecular motion. The effect of this modification is to slide the 
von Mises ellipse to extend less into the I quadrant and more into the III quadrant as shown 
in Fig. 8. This shows graphically that greater stresses are needed for yield in compression, and 
lesser stresses in tension. 

Figure 9: A craze in polystyrene (from R. Kambour, “Crazing,” Encyclopedia of Polymer Science 
and Engineering, Wiley-Interscience, 1991). 

Several amorphous glassy polymers — notably polystyrene, polymethylmethacrylate, and 
polycarbonate — are subject to a yield mechanism termed “crazing” in which long elongated 
voids are created within the material by a tensile cavitation process. Figure 9 shows a craze 
in polystyrene, grown in plasticizing fluid near Tg. The voids, or crazes, are approximately 
1000Å thick and microns or more in length, and appear visually to be much like conventional 
cracks. They differ from cracks, however, in that the broad faces of the crazes are spanned by 
a great many elongated fibrils that have been drawn from the polymer as the craze opens. The 
fibril formation requires shear flow, but the process is also very dependent on free volume. A 
successful multiaxial stress criterion for crazing that incorporates both these features has been 
proposed3 of the form 

B(T )
σ1 − σ2 = A(T ) +  

σ1 + σ2 
The left hand side of this relation is proportional to the shear stress, and the denominator in 
the second term on the right hand side is related to the hydrostatic component of the stress. As 
the hydrostatic tension increases, the shear needed to cause crazing decreases. The parameters 
A and B are adjustable, and both depend on temperature. This relation plots as a batwing on 
the yield locus diagram as seen in Fig. 10, approaching a 45◦ diagonal drawn through the II 

S. Sternstein and L. Ongchin, Polymer Preprints, 10, 1117, 1969. 
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and IV quadrants. Crazing occurs to the right of the curve; note that crazing never occurs in 
compressive stress fields. 

Figure 10: The Sternstein envelopes for crazing and pressure-inhibited shear yielding. 

Crazing is a yield mechanism, but it also precipitates brittle fracture as the craze height 
increases and the fibrils are brought to rupture. The point where the craze locus crosses the 
shear yielding locus is therefore a type of mechanically induced ductile-brittle transition, as the 
failure mode switches from shear yielding to craze embrittlement. Environmental agents such 
as acetone that expand the free volume in these polymers greatly exacerbate the tendency for 
craze brittleness. Conversely, modifications such as rubber particle inclusions that stabilize the 
crazes and prevent them from becoming true cracks can provide remarkable toughness. Rubber 
particles not only stabilize crazes, they also cause a great increase in the number of crazes, so 
the energy absorption of craze formation can add to the toughness as well. This is the basis of 
the “high impact polystyrene,” or HIPS, mentioned at the outset of this chapter. 

Effect of rate and temperature 

The yield process can be viewed as competing with fracture, and whichever process has the 
lowest stress requirements will dominate. As the material is made less and less mobile, for 
instance by lowering the temperature or increasing the number and tightness of chemical bonds, 
yielding becomes more and more difficult. The fracture process is usually much less dependent 
on mobility. Both yield and fracture stresses usually increase with decreasing temperature, but 
yield is more temperature-dependent (see Fig. 11). This implies that below a critical temperature 
(called the ductile-brittle transition temperature TDB) the material will fracture before it yields. 
Several notable failures in ships and pipelines have occurred during winter temperatures when 
the steels used in their manufacture were stressed below their TDB and were thus unable to 
resist catastrophic crack growth. In polymers, the ductile-brittle transition temperature is often 
coincident with the glass transition temperature. Clearly, we need an engineering model capable 
of showing how yield depends on temperature, and one popular approach is outlined below. 

Yield processes are thermally activated, stress driven motions, much like the flow of viscous 
liquids. Even without going into much detail as to the specifics of the motions, it is possible to 
write down quite effective expressions for the dependency of these motions on strain rate and 
temperature. In the Eyring view of thermally activated processes, an energy barrier EY 

∗ must be 
overcome for the motion to proceed. (We shall use the asterisk superscript to indicate activation 
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Figure 11: Schematic illustration of the temperature dependence of yield and fracture stress. 

parameters, and the Y subscript here indicates the yield process.) A stress acts to lower the 
barrier when it acts in the direction of flow, and to raise it when it opposes the flow. 

Consider now a constant strain rate test (ε̇ = const), in which the stress rises until yield 
occurs at σ = σY . At the yield point we have dσ/dε = 0, so a fluidlike state is achieved in 
which an increment of strain can occur without a corresponding incremental increase in stress. 
Analogously with rate theories for viscous flow, an Eyring rate equation can be written for the 
yielding process as 

ε̇ = ε̇0 exp 
−(EY 

∗ − σY V ∗) 
(4)

kT 

Here k is Boltzman’s constant and V ∗ is a factor governing the effectiveness of the stress in 
reducing the activation barrier. It must have units of volume for the product σY V ∗ to have units 
of energy, and is called the “activation volume” of the process. Taking logs and rearranging, 

σY EY 
∗ k ε̇ 

= + ln 
T V ∗ T V ∗ ε̇0 

Hence plots of σY /T versus ln ε̇ should be linear with a slope k/V ∗ as seen in Fig. 12, from 
which the activation volume may be computed. The horizontal spacing between two lines at 
differing temperatures T1 and T2 gives the activation energy: 

k (ln ˙ − ln ˙
EY 
∗ = � 

εT2 � 
εT1 ) 

1 1−T1 T2 

Apparent activation volumes in polymers are on the order of 5000Å3, much larger than a single 
repeat unit. This is taken to indicate that yield in polymers involves the cooperative motion of 
several hundred repeat units. 

Example 3 

The yield stress for polycarbonate is reported at 60 MPa at room-temperature (23◦C = 296◦K), and we 
wish to know its value at 0◦C (273◦K), keeping the strain rate the same. 

This can be accomplished by writing Eqn. 4 out twice, once for each temperature, and then dividing 
one by the other. The parameters ε̇ and ε̇0 cancel, leaving 

E∗ − σ273V ∗ E∗ − σ296V ∗ 

1 =  exp  Y Y − Y Y 

R(273) R(296) 

From the data in Fig. 12, the yield activation parameters are EY 
∗ = 309 kJ/mol, V ∗ = 3.9 × 10−3m3/mol. 

Using these along with R = 8.314 J/mol and σY 
296 = 60  × 106 N/m2, we  have  
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Figure 12: Eyring plot showing dependence of yield strength on temperature and strain rate 
in polycarbonate (from N.G. McCrum, C.P Buckley and C.B. Bucknall, Principles of Polymer 
Engineering, Oxford University Press, 1988). 

σ273 = 61.5 MPa  Y 

Continuum plasticity 

Plasticity theory, which seeks to determine stresses and displacements in structures all or part 
of which have been stressed beyond the yield point, is an important aspect of solid mechanics. 
The situation is both materially and geometrically nonlinear, so it is not a trivial undertaking. 
However, in such areas as metal forming, plasticity theory has provided valuable insight. We 
will outline only a few aspects of this field in the following paragraphs, to introduce some of the 
fundamental concepts that the reader can extend in future study. 

Plastic deformation 

A useful idealization in modeling plastic behavior takes the material to be linearly elastic up 
to the yield point as shown in Fig. 13, and then “perfectly plastic” at strains beyond yield. 
Strains up to yield (the line between points a and b ) are recoverable, and the material unloads 
along the same elastic line it followed during loading; this is conventional elastic response. But 
if the material is strained beyond yield (point b), the “plastic” straining beyond b takes place at 
constant stress and is unrecoverable. If the material is strained to point c and then unloaded, it 
follows the path cd (a line parallel to the original elastic line ab) rather than returning along cba. 
When the stress has been brought to zero (point d), the plastic strain ad remains as a  residual 
strain. 

Plastic deformation can generate “ residual” stresses in structures, internal stresses that 
remain even after the external loads are removed. To illustrate this, consider two rods having 
different stress-strain curves, connected in parallel (so their strains are always equal) as shown 
in Fig. 14. When the rods are strained up to the yield point of rod B (point a on the strain 
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Figure 13: The elastic-perfectly plastic idealization of plastic deformation. 

axis), rod A will have experienced an amount of permanent plastic deformation εp. When the 
applied load is removed, rod B unloads along its original stress-strain curve, but rod A follows 
a path parallel to its original elastic line. When rod A reaches zero stress (point b), rod B will 
still be in tension (point c). In order for the load transmitted by the rods together to come to 
zero, rod B will pull rod A into compression until −σB = σA as indicated by points d and e. 
Residual stresses are left in the rods, and the assembly as a whole is left with a residual tensile 
strain. 

Figure 14: Plastic deformation of two-bar assembly. 

Compressive residual stress can be valuable if the structure must bear tensile loads. Similarly 
to how rapid quenching can be used to make safety glass by putting the surfaces in compression, 
plastic deformation can be used to create favorable compressive stresses. One famous such 
technique is called “autofrettage;” this is a method used to strengthen cannon barrels against 
bursting by pressurizing them from the inside so as to bring the inner portion of the barrel into 
the plastic range. When the pressure is removed, the inner portions are left with a compressive 
residual stress just as with bar A in the above example. 

Wire drawing 

To quantify the plastic flow process in more detail, consider next the “drawing” of wire4, in  
which wire is pulled through a reducing die so as to reduce its cross-sectional area from A0 to A 
as shown in Fig. 15. Since volume is conserved during plastic deformation, this corresponds to 
an axial elongation of L/L0 = A0/A. Considering the stress state to be simple uniaxial tension, 
we have 

G.W. Rowe, Elements of Metalworking Theory, Edward Arnold, London, 1979. 
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Figure 15: Wire drawing. 

σ1 = σY , σ2 = σ3 = 0  

where 1 denotes the direction along the wire and 2 and 3 are the transverse directions. The 
work done in stretching the wire by an increment of length dL, per unit volume of material, is 

dW σY AdL  
dU = = 

AL AL 
Integrating this from L0 to L to obtain the total work: 

� L F dL  L 
U = dU = = σY ln 

L0 AL L0 

The quantity ln(L/L0) is  the  logarithmic strain εT introduced in Module 4 (Stress-Strain Curves). 

Example 4 

The logarithmic strain can be written in terms of either length increase or area reduction, due to the 
constancy of volume during plastic deformation: εT = ln(L/L0) = ln(A0/A). In terms of diameter 
reduction, the relation A = πd2/4 leads  to  

πd20/4 d0
εT = ln  = 2 ln  

πd2/4 d 

Taking the pearlite cell size to shrink commensurately with the diameter, we expect the wire strength √ 
σf to vary according to the Hall-Petch relation with 1/ d. The relation between wire strength and 
logarithmic drawing strain is then 

exp (εT /4)
σf ∝ √ 

do 

The work done by the constant pulling force F in drawing an initial length L0 of wire to a 
new length L is W = FL. This must equal the work per unit volume done in the die, multiplied 
by the total volume of wire: 

L 
FL  = (AL) σY ln 

L0 

Written in terms of area reduction, this is 

A0
F = AσY ln 

A 

12 



This simple result is useful in estimating the requirements of wire drawing, even though it 
neglects the actual complicated flow field within the die and the influence of friction at the die 
walls. Both friction at the surface and constraints to flow within the field raise the force needed 
in drawing, but the present analysis serves to establish a lower-limit approximation. It is often 
written in terms of the drawing stress σ1 = F/A  and the area reduction ratio r = (A0 −A)/A0 = 
1 − (A/A0): 

1 
σ1 = σY ln 

1 − r 
Note that the draw stress for a small area reduction is less than the tensile yield stress. In 
fact, the maximum area reduction that can be achieved in a single pass can be estimated by 
solving for the value of r which brings the draw stress up to the value of the yield stress, which 
it obviously cannot exceed. This calculation gives 

1 1 
ln = 1  ⇒ rmax = 1  − = 0.63 

1 − rmax e 

Hence the maximum area reduction is approximately 63%, assuming perfect lubrication at the 
die. This lower-bound treatment gives an optimistic result, but is not far from the approximately 
50% reduction often used as a practical limit. If the material hardens during drawing, the 
maximum reduction can be slightly greater. 

Slip-line fields 

In cases of plane strain, there is a graphical technique called slip-line theory5 which permits a 
more detailed examination of plastic flow fields and the loads needed to create them. Friction 
and internal flow constraints can be included, so upper-bound approximations are obtained 
that provide more conservative estimates of the forces needed in deformation. Considerable 
experience is needed to become proficient in this method, but the following will outline some of 
the basic ideas. 

Consider plane strain in the 1-3 plane, with no strain in the 2-direction. There is a Poisson 
stress in the 2-direction, given by 

1 
ε2 = 0 =  [σ2 − ν(σ1 + σ3)]

E 
Since ν = 1/2 in plastic flow, 

1 
σ2 = (σ1 + σ3)

2

The hydrostatic component of stress is then 

1 1 
p = (σ1 + σ2 + σ3) =  (σ1 + σ3) =  σ2

3 2 
Hence the Poisson stress σ2 in the zero-strain direction is the average of the other two stresses σ1 
and σ2, and also equal to the hydrostatic component of stress. The stress state can be specified 
in terms of the maximum shear stress, which is just k during plastic flow, and the superimposed 
hydrostatic pressure p: 

σ1 = −p + k, σ2 = −p σ3 = −p − k 

W. Johnson and P.B. Mellor, Plasticity for Mechanical Engineers, Van Nostrand Co., New York, 1962. 
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Since the shear stress is equal to k everywhere, the problem is one of determining the directions 
of k (the direction of maximum shear, along which slip occurs), and the magnitude of p. 

The graphical technique involves sketching lines that lie along the directions of k. Since  
maximum shear stresses act on two orthogonal planes, there will be two sets of these lines, 
always perpendicular to one another and referred to as α-lines and β-lines. The direction of 
these lines is specified by an inclination angle φ. Any convenient inclination can be used for 
the φ = 0 datum, and the identification of α- vs.  β-lines is such as to make the shear stress 
positive according to the usual convention. As the pressure p varies from point to point, there 
is a corresponding variation of the angle φ, given  by  the  Hencky equations as 

p + 2kφ = C1 = constant, along an α-line 

p − 2kφ = C2 = constant, along a β-line 

Hence the pressure can be determined from the curvature of the sliplines, once the constant is 
known. 

The slip-line field must obey certain constraints at boundaries: 

1.	 Free surfaces: Since there can be no stress normal to a free surface, we can put σ3 = 0  
there and then 

p = k, σ1 = −p − k = −2k 

Hence the pressure is known to be just the shear yield strength at a free surface. Further­
more, since the directions normal and tangential to the surface are principal directions, 
the directions of maximum shear must be inclined at 45◦ to the surface. 

2.	 Frictionless surface: The shear stress must be zero tangential to a frictionless surface, 
which again means that the tangential and normal directions must be principal directions. 
Hence the slip lines must meet the surface at 45◦ . However, there will in general be a 
stress acting normal to the surface, so σ3 	= 0  and  thus  p will not be equal to k. 

3.	 Perfectly rough surface: If the friction is so high as to prevent any tangential motion at 
the surface, the shearing must be maximum in a direction that is also tangential to the 
surface. One set of slip lines must then be tangential to the surface, and the other set 
normal to it. 

Figure 16: Slip-line construction for a flat indentation. 

Consider a flat indentor of width b being pressed into a semi-infinite block, with negligible 
friction (see Fig. 16). Since the sliplines must meet the indentor surface at 45◦, we can  draw  a  
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triangular flow field ABC. Since all lines in this region are straight, there can be no variation 
in the pressure p, and the field is one of “constant state.” This cannot be the full extent of the 
field, however, since it would be constrained both vertically and laterally by rigid metal. The 
field must extend to the free surfaces adjacent to the punch, so that downward motion under 
the punch can be compensated by upward flow adjacent to it. Two more triangular regions 
ADF and BEG are added that satisfy the boundary conditions at free surfaces, and these are 
connected to the central triangular regions by “fans” AFC and BCG. Fans are very useful in 
slip-line constructions; they are typically centered on singularities such as points A and B where 
there is no defined normal to the surface. 

The pressure on the punch needed to establish this field can be determined from the sliplines, 
and this is one of their principal uses. Since BE is a free surface, σ3 = 0  there  and  p = k. The  
pressure remains constant along line EG since φ is unchanging, but as φ decreases along the curve 
GC (the line curves clockwise), the pressure must increase according to the Hencky equation. 
At point C it has rotated through −π/2 so the  pressure  there is  

π 
pC + 2kφ = pC + 2k − = constant = pG = k 

2 

pC = k(1 + π) 

The pressure remains unchanged along lines CA  and CB, so the pressure along the punch face 
is also k(1 + π). The total stress acting upward on the punch face is therefore 

π 
σ1 = p + k = 2k 1 +  

2 

The ratio of punch pressure to the tensile yield strength 2k is 

σ1 π 
= 1 +  = 2.571 

2k 2 
The factor 2.571 represents the increase over the tensile yield strength caused by the geometrical 
constraints on the flow field under the punch. 

The Brinell Hardness Test is similar to the punch yielding scenario above, but uses a hard 
steel sphere instead of a flat indentor. The Brinell hardness H is calculated as the load applied 
to the punch divided by the projected area of the indentation. Analysis of the Brinell test differs 
somewhat in geometry, but produces a result not much different than that of the flat punch: 

H 
≈ 2.8 − 2.9 

σY 

This relation is very useful in estimating the yield strength of metals by simple nondestructive 
indentation hardness tests. 

Problems 

1. An open-ended pressure vessel is constructed of aluminum, with diameter 0.3 m and wall 
thickness 3 mm. (Open-ended in this context means that both ends of the vessel are 
connected to other structural parts able to sustain pressure, as in a hose connected between 
two reservoirs.) Determine the internal pressure at which the vessel will yield according 
to the (a) Tresca and (b) von Mises criteria. 
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Prob. 1


Prob. 2 

2.	 Repeat the previous problem, but with the pressure vessel now being closed-ended. 

3. A steel plate is clad with a thin layer of aluminum on both sides at room temperature, 
and the temperature then raised. At what temperature increase ∆T will the aluminum 
yield? 

Prob. 3 

4.	 If the temperature in the previous problem is raised 40◦C beyond the value at which 
yielding occurs, and is thereafter lowered back to room temperature, what is the residual 
stress left in the aluminum? 

5. Copper alloy is subjected to the stress state σx = 100, σy = −200, τxy = 100 (all in MPa). 
Determine whether yield will occur according to the (a) Tresca and (b) von Mises criterion. 

6. Repeat the previous problem, but with the stress state σx = 190, σy = 90, τxy = 120 (all 
in MPa) 

7.	 A thin-walled tube is placed in simultaneous tension and torsion, causing a stress state as 
shown here. Construct a plot of τ/σY vs. σ/σY at which yield will occur according to the 
(a) Tresca and (b) von Mises criterion. (σY is the tensile yield stress.) 
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Prob. 7 

8. A solid circular steel shaft is loaded by belt pulleys at both ends as shown.	 Determine the 
diameter of the shaft required to avoid yield according to the von Mises criterion, with a 
factor of safety of 2. 

Prob. 8 

9. For polycarbonate, the kinetic parameters in Eqn. 4 are found to be ε̇0 = 448 s−1 , EY 
∗ = 309 

kJ/mol, and V ∗ = 3.9 × 10−3 m3/mol. Find the yield stress σY at a strain rate of 
ε̇ = 102 s−1 and temperature 40◦C. 

10. Yield stresses (in MPa) have been measured at various strain rates and temperatures as 
follows: 

ε̇ = 10−3 s−1 ε̇ = 10−1 s−1 

T = 0◦C 54.1 62.7 
T = 40◦C 42.3 52.1 

Determine the activation volume for the yield process. What physical significance might 
this parameter have? 

11. The yield stress of a polymer is measured to be 20 MPa at a temperature of 300K and a 
strain rate of 10−3s−1 . When the strain rate is doubled from this value, the yield stress 
is observed to increase by 10%. What is the apparent activation volume for yield in this 
case? 
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12.	 Show the von Mises stress can be written in index notation as σM = 3Σij Σij/2 

13. A sample of linear	 polyethylene was tested in uniaxial loading at T = 23◦ C and  ε̇ = 
10−3 s−1 . The yield stress σY was found to be 30.0 MPa in tension and 31.5 MPa in 
compression. Determine the pressure-dependency constant A in Eqn. 3. 

14.	 A circular shaft of radius R is subjected to a torque T . 

(a) What value  of  T will be just large enough to induce yielding at the outer surface? 

(b) As the value of T is increased beyond the level found in (a), determine the radius re 
within which the material is still in the elastic range. 

(c) What value  of  T will make the shaft fully plastic; i.e. re = 0?  

15. A two-element truss frame is constructed of steel with the geometry shown.	 What load P 
can the frame support without yielding in either element? 

Prob. 15 

16. A three-element truss frame is constructed of steel with the geometry shown.	 What load 
P can the frame support before all three elements have yielded? 

Prob. 16 

17. If the frame of the previous problem is loaded until all three members have yielded and 
the load then reduced to zero, find the residual stress in the central element. 

18. A rigid beam is hinged at one end as shown and supported by two vertical rods as shown. 

(a) What load  P can the structure support before both vertical rods have yielded? 

(b) What is the residual stress in the vertical rods after the load has been reduced to zero? 
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Prob. 18 

19.	 Estimate the drawing force required to reduce the diameter of a 0.125′′ aluminum rod by 
50% in a wire-drawing operation. 
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