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Introduction 

Finite element analysis (FEA) has become commonplace in recent years, and is now the basis 
of a multibillion dollar per year industry. Numerical solutions to even very complicated stress 
problems can now be obtained routinely using FEA, and the method is so important that even 
introductory treatments of Mechanics of Materials – such as these modules – should outline its 
principal features. 
In spite of the great power of FEA, the disadvantages of computer solutions must be kept in 

mind when using this and similar methods: they do not necessarily reveal how the stresses are 
influenced by important problem variables such as materials properties and geometrical features, 
and errors in input data can produce wildly incorrect results that may be overlooked by the 
analyst. Perhaps the most important function of theoretical modeling is that of sharpening the 
designer’s intuition; users of finite element codes should plan their strategy toward this end, 
supplementing the computer simulation with as much closed-form and experimental analysis as 
possible. 
Finite element codes are less complicated than many of the word processing and spreadsheet 

packages found on modern microcomputers. Nevertheless, they are complex enough that most 
users do not find it effective to program their own code. A number of prewritten commercial 
codes are available, representing a broad price range and compatible with machines from mi­
crocomputers to supercomputers1 . However, users with specialized needs should not necessarily 
shy away from code development, and may find the code sources available in such texts as that 
by Zienkiewicz2 to be a useful starting point. Most finite element software is written in Fortran, 
but some newer codes such as felt are in C or other more modern programming languages. 
In practice, a finite element analysis usually consists of three principal steps: 

1.	 Preprocessing: The user constructs a model of the part to be analyzed in which the geom­
etry is divided into a number of discrete subregions, or “elements,” connected at discrete 
points called “nodes.” Certain of these nodes will have fixed displacements, and others 
will have prescribed loads. These models can be extremely time consuming to prepare, 
and commercial codes vie with one another to have the most user-friendly graphical “pre­
processor” to assist in this rather tedious chore. Some of these preprocessors can overlay 
a mesh on a preexisting CAD file, so that finite element analysis can be done conveniently 
as part of the computerized drafting-and-design process. 

1C.A. Brebbia, ed., Finite Element Systems, A Handbook, Springer-Verlag, Berlin, 1982. 
2O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method, McGraw-Hill Co., London, 1989. 
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2.	 Analysis: The dataset prepared by the preprocessor is used as input to the finite element 
code itself, which constructs and solves a system of linear or nonlinear algebraic equations 

Kijuj = fi 

where u and f are the displacements and externally applied forces at the nodal points. The 
formation of the K matrix is dependent on the type of problem being attacked, and this 
module will outline the approach for truss and linear elastic stress analyses. Commercial 
codes may have very large element libraries, with elements appropriate to a wide range 
of problem types. One of FEA’s principal advantages is that many problem types can be 
addressed with the same code, merely by specifying the appropriate element types from 
the library. 

3.	 Postprocessing: In the earlier days of finite element analysis, the user would pore through 
reams of numbers generated by the code, listing displacements and stresses at discrete 
positions within the model. It is easy to miss important trends and hot spots this way, 
and modern codes use graphical displays to assist in visualizing the results. A typical 
postprocessor display overlays colored contours representing stress levels on the model, 
showing a full-field picture similar to that of photoelastic or moire experimental results. 

The operation of a specific code is usually detailed in the documentation accompanying the 
software, and vendors of the more expensive codes will often offer workshops or training sessions 
as well to help users learn the intricacies of code operation. One problem users may have even 
after this training is that the code tends to be a “black box” whose inner workings are not 
understood. In this module we will outline the principles underlying most current finite element 
stress analysis codes, limiting the discussion to linear elastic analysis for now. Understanding 
this theory helps dissipate the black-box syndrome, and also serves to summarize the analytical 
foundations of solid mechanics. 

Matrix analysis of trusses 

Pin-jointed trusses, discussed more fully in Module 5, provide a good way to introduce FEA 
concepts. The static analysis of trusses can be carried out exactly, and the equations of even 
complicated trusses can be assembled in a matrix form amenable to numerical solution. This 
approach, sometimes called “matrix analysis,” provided the foundation of early FEA develop­
ment. 
Matrix analysis of trusses operates by considering the stiffness of each truss element one 

at a time, and then using these stiffnesses to determine the forces that are set up in the truss 
elements by the displacements of the joints, usually called “nodes” in finite element analysis. 
Then noting that the sum of the forces contributed by each element to a node must equal the 
force that is externally applied to that node, we can assemble a sequence of linear algebraic 
equations in which the nodal displacements are the unknowns and the applied nodal forces are 
known quantities. These equations are conveniently written in matrix form, which gives the 
method its name: ⎧ ⎫ ⎧ ⎫ 

K11 K12 K1n ⎪ ⎪ ⎪ ⎪ 
⎡	 ⎤ 

· · ·  ⎪ u1 ⎪ ⎪ f1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎢	 ⎥⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎨ ⎬ ⎢	 K21 K22 · · ·  K2n  ⎥ u2 f2 ⎢	 ⎥ ⎢ . . . . ⎥ . = . . . . . ⎪ . ⎪ ⎪ . ⎪ ⎣ . . . . ⎦⎪ . ⎪ ⎪ . ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭Kn1  Kn2  · · ·  Knn un fn 
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Here ui and fj indicate the deflection at the ith node and the force at the jth node (these 
would actually be vector quantities, with subcomponents along each coordinate axis). The Kij 
coefficient array is called the global stiffness matrix, with  the  ij component being physically the 
influence of the jth displacement on the ith force. The matrix equations can be abbreviated as 

Kij uj = fi or Ku = f (1) 

using either subscripts or boldface to indicate vector and matrix quantities. 
Either the force externally applied or the displacement is known at the outset for each node, 

and it is impossible to specify simultaneously both an arbitrary displacement and a force on a 
given node. These prescribed nodal forces and displacements are the boundary conditions of 
the problem. It is the task of analysis to determine the forces that accompany the imposed 
displacements, and the displacements at the nodes where known external forces are applied. 

Stiffness matrix for a single truss element 

As a first step in developing a set of matrix equations that describe truss systems, we need a 
relationship between the forces and displacements at each end of a single truss element. Consider 
such an element in the x − y plane as shown in Fig. 1, attached to nodes numbered i and j and 
inclined at an angle θ from the horizontal. 

Figure 1: Individual truss element. 

Considering the elongation vector δ to be resolved in directions along and transverse to the 
element, the elongation in the truss element can be written in terms of the differences in the 
displacements of its end points: 

δ = (uj  cos θ + vj sin θ) − (ui cos θ + vi sin θ) 

where u and v are the horizontal and vertical components of the deflections, respectively. (The 
displacements at node i drawn in Fig. 1 are negative.) This relation can be written in matrix 
form as: ⎧ ⎫ ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ � � ⎨ ⎬ viδ = −c −s c s  ⎪  uj  ⎪  ⎪ ⎪  ⎪ ⎪  ⎩ ⎭  vj  

Here c = cos  θ  and s = sin  θ.  
The axial force P that accompanies the elongation δ is given by Hooke’s law for linear elastic 

bodies as P = (AE/L)δ. The horizontal and vertical nodal forces are shown in Fig. 2; these can 
be written in terms of the total axial force as: 
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Figure 2: Components of nodal force. 

⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎪ fxi ⎪ ⎪ −c ⎪ ⎪ −c ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬fyi −s −s AE 
= P = δ ⎪ fxj ⎪ ⎪ c ⎪ ⎪ c ⎪ L ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭fyj s s ⎧ ⎫ ⎧ ⎫ ⎪ −c ⎪ ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ AE ⎨ ⎬−s vi = −c −s c s  ⎪ c ⎪ L ⎪ uj ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ s vj 

Carrying out the matrix multiplication: 

⎧ ⎫ ⎧ ⎫ ⎡ ⎤ ⎪ fxi ⎪ c2 cs −c2 −cs ⎪ ui ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎢ 2 2 ⎥⎨ ⎬fyi = 
AE ⎢⎢ 

cs 
2 

s −cs 
2 
−s ⎥⎥ 

vi (2) ⎪ ⎪ L ⎣ −c −cs c cs ⎦⎪ uj ⎪ ⎪ fxj ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ 2 2 ⎩ ⎭fyj −cs −s cs s vj 

The quantity in brackets, multiplied by AE/L, is known as the “element stiffness matrix” 
kij . Each of its terms has a physical significance, representing the contribution of one of the 
displacements to one of the forces. The global system of equations is formed by combining the 
element stiffness matrices from each truss element in turn, so their computation is central to the 
method of matrix structural analysis. The principal difference between the matrix truss method 
and the general finite element method is in how the element stiffness matrices are formed; most 
of the other computer operations are the same. 

Assembly of multiple element contributions 

Figure 3: Element contributions to total nodal force. 

The next step is to consider an assemblage of many truss elements connected by pin joints. 
Each element meeting at a joint, or node, will contribute a force there as dictated by the 
displacements of both that element’s nodes (see Fig. 3). To maintain static equilibrium, all 
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element force contributions fi
elem at a given node must sum to the force fi

ext that is externally 
applied at that node: 

f ext f elem kelem kelem 
i = i = (  ij uj ) = (  ij )uj = Kijuj 

elem elem elem 

Each element stiffness matrix kelem is added to the appropriate location of the overall, or “global” ij 
stiffness matrix Kij that relates all of the truss displacements and forces. This process is called 
“assembly.” The index numbers in the above relation must be the “global” numbers assigned 
to the truss structure as a whole. However, it is generally convenient to compute the individual 
element stiffness matrices using a local scheme, and then to have the computer convert to global 
numbers when assembling the individual matrices. 

Example 1 

The assembly process is at the heart of the finite element method, and it is worthwhile to do a simple 
case by hand to see how it really works. Consider the two-element truss problem of Fig. 4, with the 
nodes being assigned arbitrary “global” numbers from 1 to 3. Since each node can in general move in 
two directions, there are 3 × 2 = 6 total degrees of freedom in the problem. The global stiffness matrix 
will then be a 6 × 6 array relating the six displacements to the six externally applied forces. Only one 
of the displacements is unknown in this case, since all but the vertical displacement of node 2 (degree of 
freedom number 4) is constrained to be zero. Figure 4 shows a workable listing of the global numbers, 
and also “local” numbers for each individual element. 

Figure 4: Global and local numbering for the two-element truss. 

Using the local numbers, the 4×4 element stiffness matrix of each of the two elements can be evaluated 
according to Eqn. 2. The inclination angle is calculated from the nodal coordinates as 

y2 − y1
θ = tan−1  

x2  −  x1  

The resulting matrix for element 1 is: ⎡ ⎤ 
25.00 −43.30 −25.00 43.30 

k(1) = ⎢⎢ −43.30 75.00 43.30 −75.00 ⎥⎥ 
× 103 ⎣ −25.00 43.30 25.00 −43.30 ⎦ 

43.30 −75.00 −43.30 75.00 

and for element 2: ⎡ ⎤ 
25.00 43.30 −25.00 −43.30 

k(2) = ⎢⎢ 43.30 75.00 −43.30 −75.00 ⎥⎥ 
× 103 ⎣ −25.00 −43.30 25.00 43.30 ⎦ 

−43.30 −75.00 43.30 75.00 

(It is important the units be consistent; here lengths are in inches, forces in pounds, and moduli in psi. 
The modulus of both elements is E = 10 Mpsi and both have area A = 0.1 in2.) These matrices have 
rows and columns numbered from 1 to 4, corresponding to the local degrees of freedom of the element. 
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However, each of the local degrees of freedom can be matched to one of the global degrees of the overall 
problem. By inspection of Fig. 4, we can form the following table that maps local to global numbers: 

local global, global, 
element 1 element 2 

1 1 3 
2 2 4 
3 3 5 
4 4 6 

Using this table, we see for instance that the second degree of freedom for element 2 is the fourth degree 
of freedom in the global numbering system, and the third local degree of freedom corresponds to the fifth 
global degree of freedom. Hence the value in the second row and third column of the element stiffness 
matrix of element 2, denoted k(2), should be added into the position in the fourth row and fifth column 23 
of the 6 × 6 global stiffness matrix. We write this as 

(2)
k23 −→ K4,5 

Each of the sixteen positions in the stiffness matrix of each of the two elements must be added into the 
global matrix according to the mapping given by the table. This gives the result ⎡ ⎤ 

(1) (1) (1) (1)
k11 k12 k13 k14 0 0 ⎢ (1) (1) (1) (1) ⎥ ⎢ k21 k22 k23 k24 0 0 ⎥ ⎢ ⎥ ⎢ k(1) k(1) k(1) + k(2) k(1) + k(2) k(2) k(2) ⎥ ⎢ 31 32 33 11 34 12 13 14 ⎥K = ⎢ k(1) k(1) k(1) + k(2) k(1) + k(2) k(2) k(2) ⎥ ⎢ 41 42 43 21 44 22 23 24 ⎥ ⎢ (2) (2) (2) (2) ⎥ ⎣ 0 0 k31 k32 k33 k34 ⎦ 

(2) (2) (2) (2)
0 0 k41 k42 k43 k44 

This matrix premultiplies the vector of nodal displacements according to Eqn. 1 to yield the vector of 
externally applied nodal forces. The full system equations, taking into account the known forces and 
displacements, are then ⎧ ⎫ ⎧ ⎫ ⎡ ⎤ 

25.0 −43.3 −25.0  43.3 0.0 0.00 ⎪ 0 ⎪ ⎪ f1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ −43.3  75.0  43.3  −75.0 0.0 0.00 ⎥⎪ 0 ⎪ ⎪ f2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎨ ⎬ ⎨ ⎬ 
3 ⎢ −25.0  43.3  50.0 0.0 −25.0 −43.30 ⎥ 0 f3

10 ⎢ ⎥ = ⎢ 43.3 −75.0 0.0 150.0 −43.3 −75.00 ⎥⎪ u4 ⎪ ⎪ −1732 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎣ 0.0 0.0 −25.0 −43.3  25.0  43.30 ⎦⎪ 0 ⎪ ⎪ f5 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ 
0.0 0.0 −43.3 −75.0  43.3  75.00 0 f5 

Note that either the force or the displacement for each degree of freedom is known, with the accompanying 
displacement or force being unknown. Here only one of the displacements (u4) is unknown, but in most 
problems the unknown displacements far outnumber the unknown forces. Note also that only those 
elements that are physically connected to a given node can contribute a force to that node. In most 
cases, this results in the global stiffness matrix containing many zeroes corresponding to nodal pairs that 
are not spanned by an element. Effective computer implementations will take advantage of the matrix 
sparseness to conserve memory and reduce execution time. 
In larger problems the matrix equations are solved for the unknown displacements and forces by 

Gaussian reduction or other techniques. In this two-element problem, the solution for the single unknown 
displacement can be written down almost from inspection. Multiplying out the fourth row of the system, 
we have 

0 + 0 + 0 + 150  ×  103 u4 + 0 + 0 =  −  1732 

u4 = − 1732/150 × 103 = − 0.01155 in 

Now any of the unknown forces can be obtained directly. Multiplying out the first row for instance gives 
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0 + 0 + 0 + (43.4)(−0.0115) × 103 + 0 + 0 =  f1 


f1  =  −500 lb


The negative sign here indicates the horizontal force on global node #1 is to the left, opposite the direction

assumed in Fig. 4. 

The process of cycling through each element to form the element stiffness matrix, assembling 
the element matrix into the correct positions in the global matrix, solving the equations for 
displacements and then back-multiplying to compute the forces, and printing the results can be 
automated to make a very versatile computer code. 
Larger-scale truss (and other) finite element analysis are best done with a dedicated computer 

code, and an excellent one for learning the method is available from the web at 
http://felt.sourceforge.net/. This code, named felt, was authored by Jason Gobat and 
Darren Atkinson for educational use, and incorporates a number of novel features to promote 
user-friendliness. Complete information describing this code, as well as the C-language source 
and a number of trial runs and auxiliary code modules is available via their web pages. If you 
have access to X-window workstations, a graphical shell named velvet is available as well. 

Example 2 

Figure 5: The six-element truss, as developed in the velvet/felt FEA graphical interface. 

To illustrate how this code operates for a somewhat larger problem, consider the six-element truss of 
Fig. 5, which was analyzed in Module 5 both by the joint-at-a-time free body analysis approach and by 
Castigliano’s method. 
The input dataset, which can be written manually or developed graphically in velvet, employs 

parsing techniques to simplify what can be a very tedious and error-prone step in finite element analysis. 
The dataset for this 6-element truss is: 

problem description 
nodes=5 elements=6 

nodes 
1 x=0 y=100 z=0 constraint=pin 
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-----------------------------------------------------------------------------

-----------------------------------------------------------------------------

-------------------------------------------------------------------------------

-----------------------------------

-----------------------------------

2 x=100 y=100 z=0 constraint=planar

3 x=200 y=100 z=0 force=P

4 x=0 y=0 z=0 constraint=pin

5 x=100 y=0 z=0 constraint=planar


truss elements

1 nodes=[1,2] material=steel

2 nodes=[2,3]

3 nodes=[4,2]

4 nodes=[2,5]

5 nodes=[5,3]

6 nodes=[4,5]


material properties

steel E=3e+07 A=0.5


distributed loads


constraints

free Tx=u Ty=u Tz=u Rx=u Ry=u Rz=u

pin Tx=c Ty=c Tz=c Rx=u Ry=u Rz=u

planar Tx=u Ty=u Tz=c Rx=u Ry=u Rz=u


forces

P Fy=-1000


end


The meaning of these lines should be fairly evident on inspection, although the felt documentation 
should be consulted for more detail. The output produced by felt for these data is: 

** ** 

Nodal Displacements 

Node # DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6 

1 0 0 0 0 0 0

2 0.013333 -0.03219 0 0 0 0

3 0.02 -0.084379 0 0 0 0

4 0 0 0 0 0 0

5 -0.0066667 -0.038856 0 0 0 0


Element Stresses 

1: 4000 
2: 2000 
3: -2828.4 
4: 2000 
5: -2828.4 
6: -2000 

Reaction Forces 

Node # DOF Reaction Force 
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--------------------------

1 Tx -2000 
1  Ty  0  
1  Tz  0  
2  Tz  0  
3  Tz  0  
4 Tx 2000 
4 Ty 1000 
4  Tz  0  
5  Tz  0  

Material Usage Summary 

Material: steel 
Number: 6 
Length: 682.8427 
Mass: 0.0000 

Total mass: 0.0000 

The vertical displacement of node 3 (the DOF 2 value) is -0.0844, the same value obtained by the 
closed-form methods of Module 5. Figure 6 shows the velvet graphical output for the truss deflections 
(greatly magnified). 

Figure 6: The 6-element truss in its original and deformed shape.


General Stress Analysis 

The element stiffness matrix could be formed exactly for truss elements, but this is not the case 
for general stress analysis situations. The relation between nodal forces and displacements are 
not known in advance for general two- or three-dimensional stress analysis problems, and an 
approximate relation must be used in order to write out an element stiffness matrix. 
In the usual “displacement formulation” of the finite element method, the governing equa­

tions are combined so as to have only displacements appearing as unknowns; this can be done by 
using the Hookean constitutive equations to replace the stresses in the equilibrium equations by 
the strains, and then using the kinematic equations to replace the strains by the displacements. 
This gives 

LTσ = LTD� = LTDLu = 0 (3) 
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Of course, it is often impossible to solve these equations in closed form for the irregular bound­
ary conditions encountered in practical problems. However, the equations are amenable to 
discretization and solution by numerical techniques such as finite differences or finite elements. 
Finite element methods are one of several approximate numerical techniques available for 

the solution of engineering boundary value problems. Problems in the mechanics of materials 
often lead to equations of this type, and finite element methods have a number of advantages 
in handling them. The method is particularly well suited to problems with irregular geometries 
and boundary conditions, and it can be implemented in general computer codes that can be 
used for many different problems. 
To obtain a numerical solution for the stress analysis problem, let us postulate a function 

ũ(x, y) as an approximation to u: 

ũ(x, y) ≈ u(x, y)  (4)  

Many different forms might be adopted for the approximation ũ. The finite element method 
discretizes the solution domain into an assemblage of subregions, or “elements,” each of which has 
its own approximating functions. Specifically, the approximation for the displacement ũ(x, y) 
within an element is written as a combination of the (as yet unknown) displacements at the 
nodes belonging to that element: 

ũ(x, y) =  Nj  (x, y)uj (5) 

Here the index j ranges over the element’s nodes, uj are the nodal displacements, and the Nj are 
“interpolation functions.” These interpolation functions are usually simple polynomials (gen­
erally linear, quadratic, or occasionally cubic polynomials) that are chosen to become unity at 
node j and zero at the other element nodes. The interpolation functions can be evaluated at any 
position within the element by means of standard subroutines, so the approximate displacement 
at any position within the element can be obtained in terms of the nodal displacements directly 
from Eqn. 5. 

Figure 7: Interpolation in one dimension. 

The interpolation concept can be illustrated by asking how we might guess the value of a 
function u(x) at an arbitrary point x located between two nodes at x = 0  and  x  = 1, assuming 
we know somehow the nodal values u(0) and u(1). We might assume that as a reasonable 
approximation u(x) simply varies linearly between these two values as shown in Fig. 7, and 
write 

u(x) ≈ ũ(x) =  u0  (1 − x) +  u1  (x)  

or 
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N0(x) = (1  −  x)
ũ(x) =  u0  N0(x) +  u1  N1(x),  N1(x) =  x  

Here the N0 and N1 are the linear interpolation functions for this one-dimensional approxima­
tion. Finite element codes have subroutines that extend this interpolation concept to two and 
three dimensions. 
Approximations for the strain and stress follow directly from the displacements: 

�̃ = Lũ = LNj uj ≡ Bj uj (6) 

σ̃ = D�̃ = DBj uj (7) 

where Bj (x, y) =  LNj  (x, y) is an array of derivatives of the interpolation functions: ⎡ ⎤ 
Nj,x 0 

Bj = ⎢ ⎣ 0 Nj,y 
⎥ ⎦ (8) 

Nj,y Nj,x 

A “virtual work” argument can now be invoked to relate the nodal displacement uj appearing 
at node j to the forces applied externally at node i: if a small, or “virtual,” displacement δui is 
superimposed on node i, the increase in strain energy δU within an element connected to that 
node is given by: 

δU = δ�T σ dV (9) 
V 

where V is the volume of the element. Using the approximate strain obtained from the inter­
polated displacements, δ�̃ = Biδui is the approximate virtual increase in strain induced by the 
virtual nodal displacement. Using Eqn. 7 and the matrix identity (AB)T = BTAT , we have: 

δU = δui
T Bi

T DBj dV uj (10) 
V 

(The nodal displacements δuTi and uj are not functions of x and y, and so can be brought from 
inside the integral.) The increase in strain energy δU must equal the work done by the nodal 
forces; this is: 

δW = δui
T fi (11) 

Equating Eqns. 10 and 11 and canceling the common factor δui
T , we have:  

BTi  DBj dV uj = fi (12) 
V 

This is of the desired form kij uj = fi, where  kij = 
� 
V B

T
i DBj dV is the element stiffness. 

Finally, the integral in Eqn. 12 must be replaced by a numerical equivalent acceptable to the 
computer. Gauss-Legendre numerical integration is commonly used in finite element codes for 
this purpose, since that technique provides a high ratio of accuracy to computing effort. Stated 
briefly, the integration consists of evaluating the integrand at optimally selected integration 
points within the element, and forming a weighted summation of the integrand values at these 
points. In the case of integration over two-dimensional element areas, this can be written: 
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f(x, y) dA ≈ f (xl, yl)wl  (13) 

A l 

The location of the sampling points xl, yl  and the associated weights wl are provided by 
standard subroutines. In most modern codes, these routines map the element into a convenient 
shape, determine the integration points and weights in the transformed coordinate frame, and 
then map the results back to the original frame. The functions Nj used earlier for interpolation 
can be used for the mapping as well, achieving a significant economy in coding. This yields what 
are known as “numerically integrated isoparametric elements,” and these are a mainstay of the 
finite element industry. 
Equation 12, with the integral replaced by numerical integrations of the form in Eqn. 13, is 

the finite element counterpart of Eqn. 3, the differential governing equation. The computer will 
carry out the analysis by looping over each element, and within each element looping over the 
individual integration points. At each integration point the components of the element stiffness 
matrix kij are computed according to Eqn. 12, and added into the appropriate positions of the 
Kij global stiffness matrix as was done in the assembly step of matrix truss method described in 
the previous section. It can be appreciated that a good deal of computation is involved just in 
forming the terms of the stiffness matrix, and that the finite element method could never have 
been developed without convenient and inexpensive access to a computer. 

Stresses around a circular hole 

We have considered the problem of a uniaxially loaded plate containing a circular hole in previous 
modules, including the theoretical Kirsch solution (Module 16) and experimental determinations 
using both photoelastic and moire methods (Module 17). This problem is of practical importance 
—- for instance, we have noted the dangerous stress concentration that appears near rivet holes 
— and it is also quite demanding in both theoretical and numerical analyses. Since the stresses 
rise sharply near the hole, a finite element grid must be refined there in order to produce 
acceptable results. 

Figure 8: Mesh for circular-hole problem.


Figure 8 shows a mesh of three-noded triangular elements developed by the felt-velvet
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graphical FEA package that can be used to approximate the displacements and stresses around 
a uniaxially loaded plate containing a circular hole. Since both theoretical and experimental 
results for this stress field are available as mentioned above, the circular-hole problem is a good 
one for becoming familiar with code operation. 
The user should take advantage of symmetry to reduce problem size whenever possible, and 

in this case only one quadrant of the problem need be meshed. The center of the hole is kept 
fixed, so the symmetry requires that nodes along the left edge be allowed to move vertically 
but not horizontally. Similarly, nodes along the lower edge are constrained vertically but left 
free to move horizontally. Loads are applied to the nodes along the upper edge, with each load 
being the resultant of the far-field stress acting along half of the element boundaries between 
the given node and its neighbors. (The far-field stress is taken as unity.) Portions of the felt 
input dataset for this problem are: 

problem description 
nodes=76 elements=116 

nodes 
1 x=1 y=-0 z=0 constraint=slide_x 
2 x=1.19644 y=-0 z=0 
3 x=0.984562 y=0.167939 z=0 constraint=free 
4 x=0.940634 y=0.335841 z=0 
5 x=1.07888 y=0.235833 z=0 
.

.

.


72 x=3.99602 y=3.01892 z=0 
73 x=3.99602 y=3.51942 z=0 
74 x=3.33267 y=4 z=0 
75 x=3.57706 y=3.65664 z=0 
76 x=4 y=4 z=0 

CSTPlaneStress elements 
1 nodes=[13,12,23] material=steel 
2 nodes=[67,58,55] 
6 nodes=[50,41,40] 
.

.

.


7 nodes=[68,67,69] load=load_case_1 
8 nodes=[68,58,67] 
9 nodes=[57,58,68] load=load_case_1 
10 nodes=[57,51,58] 
11 nodes=[52,51,57] load=load_case_1 
12 nodes=[37,39,52] load=load_case_1 
13 nodes=[39,51,52] 
.

.

.


116 nodes=[2,3,1]


material properties

steel E=2.05e+11 nu=0.33 t=1


distributed loads

load_case_1 color=red direction=GlobalY values=(1,1) (3,1)
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constraints 
free Tx=u Ty=u Tz=u Rx=u Ry=u Rz=u 
slide_x color=red Tx=u Ty=c Tz=c Rx=u Ry=u Rz=u 
slide_y color=red Tx=c Ty=u Tz=c Rx=u Ry=u Rz=u 

end 

The y-displacements and vertical stresses σy are contoured in Fig. 9(a) and (b) respectively; 
these should be compared with the photoelastic and moire analyses given in Module 17, Figs. 8 
and 10(a). The stress at the integration point closest to the x-axis at the hole is computed 
to be σy,max = 3.26, 9% larger than the theoretical value of 3.00. In drawing the contours of 
Fig. 9b, the postprocessor extrapolated the stresses to the nodes by fitting a least-squares plane 
through the stresses at all four integration points within the element. This produces an even 
higher value for the stress concentration factor, 3.593. The user must be aware that graphical 
postprocessors smooth results that are themselves only approximations, so numerical inaccuracy 
is a real possibility. Refining the mesh, especially near the region of highest stress gradient at 
the hole meridian, would reduce this error. 

Figure 9: Vertical displacements (a) and stresses (b) as computed for the mesh of Fig. 8. 

Problems 

1. (a) – (h) Use FEA to determine the force in each element of the trusses drawn below. 

2. (a)	 – (c) Write out the global stiffness matrices for the trusses listed below, and solve 
for the unknown forces and displacements. For each element assume E = 30 Mpsi and 
A = 0.1 in2  .  

3. Obtain a plane-stress finite element solution for a cantilevered beam with a single load at 
the free end. Use arbitrarily chosen (but reasonable) dimensions and material properties. 
Plot the stresses σx and τxy as functions of y at an arbitrary station along the span; also 
plot the stresses given by the elementary theory of beam bending (c.f. Module 13) and 
assess the magnitude of the numerical error. 

4. Repeat the previous problem, but with a symmetrically-loaded beam in three-point bend­
ing. 
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Prob. 1


Prob. 2 

5. Use axisymmetric elements to obtain a finite element solution for the radial stress in a 
thick-walled pressure vessel (using arbitrary geometry and material parameters). Compare 
the results with the theoretical solution (c.f. Prob. 2 in Module 16). 
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Prob. 3


Prob. 4
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