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Introduction 

Torsionally loaded shafts are among the most commonly used structures in engineering. For 
instance, the drive shaft of a standard rear-wheel drive automobile, depicted in Fig. 1, serves 
primarily to transmit torsion. These shafts are almost always hollow and circular in cross 
section, transmitting power from the transmission to the differential joint at which the rotation 
is diverted to the drive wheels. As in the case of pressure vessels, it is important to be aware 
of design methods for such structures purely for their inherent usefulness. However, we study 
them here also because they illustrate the role of shearing stresses and strains. 

Figure 1: A drive shaft. 

Shearing stresses and strains 

Not all deformation is elongational or compressive, and we need to extend our concept of strain 
to include “shearing,” or “distortional,” effects. To illustrate the nature of shearing distortions, 
first consider a square grid inscribed on a tensile specimen as depicted in Fig. 2(a). Upon 
uniaxial loading, the grid would be deformed so as to increase the length of the lines in the 
tensile loading direction and contract the lines perpendicular to the loading direction. However, 
the lines remain perpendicular to one another. These are termed normal strains, since planes 
normal to the loading direction are moving apart. 
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Figure 2: (a) Normal and (b) shearing deformations. 

Now consider the case illustrated in Fig. 2(b), in which the load P is applied transversely to 
the specimen. Here the horizontal lines tend to slide relative to one another, with line lengths 
of the originally square grid remaining unchanged. The vertical lines tilt to accommodate this 
motion, so the originally right angles between the lines are distorted. Such a loading is termed 
direct shear. Analogously to our definition of normal stress as force per unit area1, or  σ  =  P/A,  
we write the shear stress τ as 

P 
τ = 

A 
This expression is identical to the expression for normal stress, but the different symbol τ reminds 
us that the loading is transverse rather than extensional. 

Example 1 

Figure 3: Tongue-and-groove adhesive joint. 

Two timbers, of cross-sectional dimension b × h, are to be glued together using a tongue-and-groove 
joint as shown in Fig. 3, and we wish to estimate the depth d of the glue joint so as to make the joint 
approximately as strong as the timber itself. 
The axial load P on the timber acts to shear the glue joint, and the shear stress in the joint is just 

the load divided by the total glue area: 

P 
τ = 

2bd 

If the bond fails when τ reaches a maximum value τf , the load at failure will be Pf = (2bd)τf . The load 
needed to fracture the timber in tension is Pf = bhσf , where  σf  is the ultimate tensile strength of the 
timber. Hence if the glue joint and the timber are to be equally strong we have 

hσf
(2bd)τf = bhσf → d = 

2τf 

1See Module 1, Introduction to Elastic Response 
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Normal stresses act to pull parallel planes within the material apart or push them closer 
together, while shear stresses act to slide planes along one another. Normal stresses promote 
crack formation and growth, while shear stresses underlie yield and plastic slip. The shear stress 
can be depicted on the stress square as shown in Fig. 4(a); it is traditional to use a half-arrowhead 
to distinguish shear stress from normal stress. The yx subscript indicates the stress is on the y 
plane in the x direction. 

Figure 4: Shear stress. 

The τyx arrow on the +y plane must be accompanied by one in the opposite direction on 
the −y plane, in order to maintain horizontal equilibrium. But these two arrows by themselves 
would tend to cause a clockwise rotation, and to maintain moment equilibrium we must also add 
two vertical arrows as shown in Fig. 4(b); these are labeled τxy, since they are on x planes in the 
y direction. For rotational equilibrium, the magnitudes of the horizontal and vertical stresses 
must be equal: 

τyx = τxy (1) 

Hence any shearing that tends to cause tangential sliding of horizontal planes is accompanied 
by an equal tendency to slide vertical planes as well. Note that all of these are positive by our 
earlier convention of + arrows on + faces being positive. A positive state of shear stress, then, 
has arrows meeting at the upper right and lower left of the stress square. Conversely, arrows in 
a negative state of shear meet at the lower right and upper left. 

Figure 5: Shear strain. 

The strain accompanying the shear stress τxy is a shear strain denoted γxy. This quantity 
is a deformation per unit length just as was the normal strain �, but now the displacement is 
transverse to the length over which it is distributed (see Fig. 5). This is also the distortion or 
change in the right angle: 

δ 
= tan  γ  ≈  γ  (2) 

This angular distortion is found experimentally to be linearly proportional to the shear stress 
at sufficiently small loads, and the shearing counterpart of Hooke’s Law can be written as 

L 

(3)τxy = Gγxy 
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where G is a material property called the shear modulus. for  isotropic materials (properties same 
in all directions), there is no Poisson-type effect to consider in shear, so that the shear strain 
is not influenced by the presence of normal stresses. Similarly, application of a shearing stress 
has no influence on the normal strains. For plane stress situations (no normal or shearing stress 
components in the z direction), the constitutive equations as developed so far can be written: 

1 
E�x 

�y 

(σx 

(σy 
1 

− νσy)
= 
= 1 

γxy 

− νσx) (4)
E 
τxy = G 

It will be shown later that for isotropic materials, only two of the material constants here are 
independent, and that 

E 
G = (5)

2(1 + ν) 

Hence if any two of the three properties E, G, or  ν, are known, the other is determined. 

Statics - Twisting Moments 

Twisting moments, or torques, are forces acting through distances (“lever arms”) so as to pro­
mote rotation. The simple example is that of using a wrench to tighten a nut on a bolt as shown 
in Fig. 6: if the bolt, wrench, and force are all perpendicular to one another, the moment is 
just the force F times the length l of the wrench: T = F · l. This relation will suffice when the 
geometry of torsional loading is simple as in this case, when the torque is applied “straight”. 

Figure 6: Simple torque: T = F × l. 

Often, however, the geometry of the applied moment is a bit more complicated. Consider a 
not-uncommon case where for instance a spark plug must be loosened and there just isn’t room 
to put a wrench on it properly. Here a swiveled socket wrench might be needed, which can result 
in the lever arm not being perpendicular to the spark plug axis, and the applied force (from 
your hand) not being perpendicular to the lever arm. Vector algebra can make the geometrical 
calculations easier in such cases. Here the moment vector around a point O is obtained by 
crossing the vector representation of the lever arm r from O with the force vector F: 

T = r × F (6) 

This vector is in a direction given by the right hand rule, and is normal to the plane containing 
the point O and the force vector. The torque tending to loosen the spark plug is then the 
component of this moment vector along the plug axis: 
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T = i · (r × F)  (7)  

where i is a unit vector along the axis. The result, a torque or twisting moment around an axis, 
is a scalar quantity. 

Example 2 

Figure 7: Working on your good old car - trying to get the spark plug out. 

We wish to find the effective twisting moment on a spark plug, where the force applied to a swivel wrench 
that is skewed away from the plug axis as shown in Fig. 7. An x�y�z� Cartesian coordinate system is 
established with z� being the spark plug axis; the free end of the wrench is 2�� above the x�y� plane 
perpendicular to the plug axis, and 12�� away from the plug along the x� axis. A 15 lb force is applied to 
the free end at a skewed angle of 25◦ vertical and 20◦ horizontal. 
The force vector applied to the free end of the wrench is 

F = 15(cos 25 sin 20 i + cos 25 cos 20 j + sin  25  k)  

The vector from the axis of rotation to the applied force is 

r = 12  i  + 0  j  + 2  k  

where i, j, k, are the unit vectors along the x, y, z axes. The moment vector around the point O is then 

TO = r × F = (−25.55i − 66.77j + 153.3k) 

and the scalar moment along the axis z� is 

Tz� = k · (r × F) = 153.3 in  −  lb 

This is the torque that will loosen the spark plug, if you’re luckier than I am with cars. 

Shafts in torsion are used in almost all rotating machinery, as in our earlier example of a 
drive shaft transmitting the torque of an automobile engine to the wheels. When the car is 
operating at constant speed (not accelerating), the torque on a shaft is related to its rotational 
speed ω and the power W being transmitted: 

W = T ω  (8) 
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Geared transmissions are usually necessary to keep the engine speed in reasonable bounds 
as the car speeds up, and the gearing must be considered in determining the torques applied to 
the shafts. 

Example 3 

Figure 8: Two-gear assembly. 

Consider a simple two-shaft gearing as shown in Fig. 8, with one end of shaft A clamped and the free end 
of shaft B loaded with a moment T . Drawing free-body diagrams for the two shafts separately, we see 
the force F transmitted at the gear periphery is just that which keeps shaft B in rotational equilibrium: 

F · rB = T 

This same force acts on the periphery of gear A, so the torque TA experienced by shaft A is 

rA
TA = F · rA = T · 

rB 

Torsional Stresses and Displacements


Figure 9: Poker-chip visualization of torsional deformation. 

The stresses and deformations induced in a circular shaft by a twisting moment can be 
found by what is sometimes called the direct method of stress analysis. Here an expression of 

6




the geometrical form of displacement in the structure is proposed, after which the kinematic, 
constitutive, and equilibrium equations are applied sequentially to develop expressions for the 
strains and stresses. In the case of simple twisting of a circular shaft, the geometric statement is 
simply that the circular symmetry of the shaft is maintained, which implies in turn that plane 
cross sections remain plane, without warping. As depicted in Fig. 9, the deformation is like a 
stack of poker chips that rotate relative to one another while remaining flat. The sequence of 
direct analysis then takes the following form: 

1.	 Geometrical statement: To quantify the geometry of deformation, consider an increment 
of length dz from the shaft as seen in Fig. 10, in which the top rotates relative to the 
bottom by an increment of angle dθ. The relative tangential displacement of the top of a 
vertical line drawn at a distance r from the center is then: 

δ = r dθ 	 (9) 

Figure 10: Incremental deformation in torsion. 

2.	 Kinematic or strain-displacement equation: The geometry of deformation fits exactly our 
earlier description of shear strain, so we can write: 

δ dθ 
γzθ = = r	 (10)

dz dz 

The subscript indicates a shearing of the z plane (the plane normal to the z axis) in the 
θ direction. As with the shear stresses, γzθ = γθz, so the order of subscripts is arbitrary. 

3.	 Constitutive equation: If the material is in its linear elastic regime, the shear stress is given 
directly from Hooke’s Law as: 

dθ 
τθz = Gγθz = Gr	 (11)

dz 

The sign convention here is that positive twisting moments (moment vector along the +z 
axis) produce positive shear stresses and strains. However, it is probably easier simply to 
intuit in which direction the applied moment will tend to slip adjacent horizontal planes. 
Here the upper (+z) plane is clearly being twisted to the right relative to the lower (−z) 
plane, so the upper arrow points to the right. The other three arrows are then determined 
as well. 
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4.	 Equilibrium equation: In order to maintain rotational equilibrium, the sum of the moments 
contributed by the shear stress acting on each differential area dA on the cross section must 
balance the applied moment T as shown in Fig. 11: 

T = τθzr dA  =  Gr
dθ 
r dA  =  G

dθ 
r 2 dA


A A dz dz A


Figure 11: Torque balance. 

The quantity 
� 
r2 dA is the polar moment of inertia J , which for a hollow circular cross 

section is calculated as 

J = 
Ro 

r 2 2πr dr = 
π(Ro 

4 − Ri 
4)	

(12) 
Ri 2 

where Ri and Ro are the inside and outside radii. For solid shafts, Ri = 0.  The  quantity  
dθ/dz can now be found as 

dθ T T 
= → θ = dz 

dz GJ z JG  

Since in the simple twisting case under consideration the quantities T, J,G  are constant 
along z, the angle of twist can be written as 

dθ	 θ 
= constant = 

dz	 L 

TL  
θ =	 (13)
GJ 

This is analogous to the expression δ = PL/AE  for the elongation of a uniaxial tensile 
specimen. 

5. An explicit formula for the stress can be obtained by using this in Eqn. 11: 

dθ θ Gr TL  
τθz = Gr = Gr = 

dz L L GJ 

Tr  
τθz =	 (14)

J 
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Note that the material property G has canceled from this final expression for stress, so 
that the the stresses are independent of the choice of material. Earlier, we have noted that 
stresses are independent of materials properties in certain pressure vessels and truss elements, 
and this was due to those structures being statically determinate. The shaft in torsion is not 
statically indeterminate, however; we had to use geometrical considerations and a statement of 
material linear elastic response as well as static equilibrium in obtaining the result. Since the 
material properties do not appear in the resulting equation for stress, it is easy to forget that 
the derivation depended on geometrical and material linearity. It is always important to keep in 
mind the assumptions used in derivations such as this, and be on guard against using the result 
in instances for which the assumptions are not justified. 
For instance, we might twist a shaft until it breaks at a final torque of T = Tf , and then use 

Eqn. 14 to compute an apparent ultimate shear strength: τf = Tf r/J . However, the material 
may very well have been stressed beyond its elastic limit in this test, and the assumption of 
material linearity may not have been valid at failure. The resulting value of τf obtained from 
the elastic analysis is therefore fictitious unless proven otherwise, and could be substantially 
different than the actual stress. The fictitious value might be used, however, to estimate failure 
torques in shafts of the same material but of different sizes, since the actual failure stress would 
scale with the fictitious stress in that case. The fictitious failure stress calculated using the 
elastic analysis is often called the modulus of rupture in torsion. 
Eqn. 14 shows one reason why most drive shafts are hollow, since there isn’t much point in 

using material at the center where the stresses are zero. Also, for a given quantity of material 
the designer will want to maximize the moment of inertia by placing the material as far from 
the center as possible. This is a powerful tool, since J varies as the fourth power of the radius. 

Example 4 

An automobile engine is delivering 100 hp (horsepower) at 1800 rpm (revolutions per minute) to the 
drive shaft, and we wish to compute the shearing stress. From Eqn. 8, the torque on the shaft is 

1 N·m 
W 100 hp 1.341×10−3 s·hp

T = = � � = 396 N · m 
ω 1800 rev 2π rad 1 min 

min rev 60 s 

The present drive shaft is a solid rod with a circular cross section and a diameter of d = 10 mm.  
Using Eqn. 14, the maximum stress occurs at the outer surface of the rod as is 

τθz = 
Tr
, r  =  d/2, J  =  π(d/2)4/2 

J 

τθz = 252 MPa 

Now consider what the shear stress would be if the shaft were made annular rather than solid, keeping 
the amount of material the same. The outer-surface shear stress for an annular shaft with outer radius 
ro and inner radius ri is 

τθz = 
Tro  
, J  =  

π  �  
ro  
4  −  ri  

4
�  

J 2 
To keep the amount of material in the annular shaft the same as in the solid one, the cross-sectional 

areas must be the same. Since the cross-sectional area of the solid shaft is A0 = πr2, the inner radius ri 
of an annular shaft with outer radius ro and area A0 is found as 

A0 = π ro 
2 − ri 

2 → ri = ro 2 − (A0/π) 
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Evaluating these equations using the same torque and with ro = 30 mm, we find ri = 28.2 mm (a  1.8  
mm wall thickness) and a stress of τθz = 44.5 MPa. This is an 82% reduction in stress. The value of r 
in the elastic shear stress formula went up when we went to the annular rather than solid shaft, but this 
was more than offset by the increase in moment of inertia J , which varies as r4 . 

Example 5 

Figure 12: Rotations in the two-gear assembly. 

Just as with trusses, the angular displacements in systems of torsion rods may be found from direct 
geometrical considerations. In the case of the two-rod geared system described earlier, the angle of twist 
of rod A is 

L L rA
θA = TA = T · 

GJ A GJ A rB 

This rotation will be experienced by gear A as well, so a point on its periphery will sweep through an arc 
S of 

L rA
S = θArA = T · · rA

GJ A rB 

Since gears A and B are connected at their peripheries, gear B will rotate through an angle of 

S L rA rA
θgearB = = T · · 

rB GJ A rB rB 

(See Fig. 11). Finally, the total angular displacement at the end of rod B is the rotation of gear B plus 
the twist of rod B itself: 

� � � �2 � � 
L rA L 

θ = θgearB + θrodB = T + T 
GJ A rB GJ B 
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Energy method for rotational displacement 

The angular deformation may also be found using Castigliano’s Theorem2, and in some problems 
this approach may be easier. The strain energy per unit volume in a material subjected to elastic 
shearing stresses τ and strains γ arising from simple torsion is: 

1 τ2 1 Tr  2  

U ∗ = τ dγ  =  τγ  = =  
2 2G 2G J 

This is then integrated over the specimen volume to obtain the total energy: 

� � � � �2 � � 
1 Tr  T 2 

U = U ∗ dV = dAdz = r 2 dA 
V L A 2G J L 2GJ2 A 

� 
T 2 

U = dz (15) 
L 2GJ 

If T , G, and  J  are constant along the length z, this becomes simply 

T 2L 
U = (16)

2GJ 

which is analogous to the expression U = P 2L/2AE for tensile specimens. 
In torsion, the angle θ is the generalized displacement congruent to the applied moment T , 

so Castigliano’s theorem is applied for a single torsion rod as 

∂U TL  
θ = = 
∂T GJ 

as before. 

Example 6 

Consider the two shafts geared together discussed earlier (Fig. 11). The energy method requires no 
geometrical reasoning, and follows immediately once the torques transmitted by the two shafts is known. 
Since the torques are constant along the lengths, we can write 

� � � � � �2 � � � T 2L L rA L
T 2U = = T + 

2GJ i 2GJ A rB 2GJ Bi 

∂U L rA rA L 
θ = = T · + T 
∂T GJ A rB rB GJ B 

Noncircular sections: the Prandtl membrane analogy 

Shafts with noncircular sections are not uncommon. Although a circular shape is optimal from 
a stress analysis view, square or prismatic shafts may be easier to produce. Also, round shafts 
often have keyways or other geometrical features needed in order to join them to gears. All 
of this makes it necessary to be able to cope with noncircular sections. We will outline one 
means of doing this here, partly for its inherent usefulness and partly to introduce a type of 

Castigliano’s Theorem is introduced in the Module 5, Trusses. 
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experimental stress analysis. Later modules will expand on these methods, and will present a 
more complete treatment of the underlying mathematical theory. 
The lack of axial symmetry in noncircular sections renders the direct approach that led to 

Eqn. 14 invalid, and a thorough treatment must attack the differential governing equations of 
the problem mathematically. These equations will be discussed in later modules, but suffice it 
to say that they can be difficult to solve in closed form for arbitrarily shaped cross sections. The 
advent of finite element and other computer methods to solve these equations numerically has 
removed this difficulty to some degree, but one important limitation of numerical solutions is 
that they usually fail to provide intuitive insight as to why the stress distributions are the way 
they are: they fail to provide hints as to how the stresses might be modified favorably by design 
changes, and this intuition is one of the designer’s most important tools. 
In an elegant insight, Prandtl3 pointed out that the stress distribution in torsion can be 

described by a “Poisson” differential equation, identical in form to that describing the deflection 
of a flexible membrane supported and pressurized from below4 . This provides the basis of the 
Prandtl membrane analogy, which was used for many years to provide a form of experimen­
tal stress analysis for noncircular shafts in torsion. Although this experimental use has been 
supplanted by the more convenient computer methods, the analogy provides a visualization of 
torsionally induced stresses that can provide the sort of design insight we seek. 
The analogy works such that the shear stresses in a torsionally loaded shaft of arbitrary cross 

section are proportional to the slope of a suitably inflated flexible membrane. The membrane 
is clamped so that its edges follow a shape similar to that of the noncircular section, and then 
displaced by air pressure. Visualize a horizontal sheet of metal with a circular hole in it, a sheet 
of rubber placed below the hole, and the rubber now made to bulge upward by pressure acting 
from beneath the plate (see Fig. 13). The bulge will be steepest at the edges and horizontal at 
its center; i.e. its slope will be zero at the center and largest at the edges, just as the stresses in 
a twisted circular shaft. 

Figure 13: Membrane inflated through a circular hole. 

It is not difficult to visualize that if the hole were square as in Fig. 14 rather than round, 
the membrane would be forced to lie flat (have zero slope) in the corners, and would have the 
steepest slopes at the midpoints of the outside edges. This is just what the stresses do. One 
good reason for not using square sections for torsion rods, then, is that the corners carry no 
stress and are therefore wasted material. The designer could remove them without consequence, 
the decision just being whether the cost of making circular rather than square shafts is more or 
less than the cost of the wasted material. To generalize the lesson in stress analysis, a protruding 
angle is not dangerous in terms of stress, only wasteful of material. 
But conversely, an entrant angle can be extremely dangerous. A sharp notch cut into the 

3Ludwig Prandtl (1875–1953) is best known for his pioneering work in aerodynamics. 
4J.P. Den Hartog, Advanced Strength of Materials, McGraw-Hill, New York, 1952 
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Figure 14: Membrane inflated through a square hole. 

shaft is like a knife edge cutting into the rubber membrane, causing the rubber to be almost 
vertical. Such notches or keyways are notorious stress risers, very often acting as the origination 
sites for fatigue cracks. They may be necessary in some cases, but the designer must be painfully 
aware of their consequences. 

Problems 

1. A torsion bar 1.5 m in length and 30 mm in diameter is clamped at one end, and the free 
end is twisted through an angle of 10◦ . Find the maximum torsional shear stress induced 
in the bar. 

Prob. 1 

2. The torsion bar of Prob. 1 fails when the applied torque is 1500 N-m.	What is the modulus 
of rupture in torsion? Is this the same as the material’s maximum shear stress? 

3. A solid steel drive shaft is to be capable of transmitting 50 hp at 500 rpm.	What should 
its diameter be if the maximum torsional shear stress is to be kept less that half the tensile 
yield strength? 

4.	 How much power could the shaft of Prob. 3 transmit (at the same maximum torsional 
shear stress) if the same quantity of material were used in an annular rather than a solid 
shaft? Take the inside diameter to be half the outside diameter. 

5. Two shafts, each 1 ft long and 1 in diameter, are connected by a 2:1 gearing, and the free 
end is loaded with a 100 ft-lb torque. Find the angle of twist at the loaded end. 

6. A shaft of length L, diameter d, and shear modulus G is loaded with a uniformly distributed 
twisting moment of T0 (N-m/m). (The twisting moment T (x) at a  distance  x  from the 
free end is therefore T0x.) Find the angle of twist at the free end. 

7. A	 composite shaft 3 ft in length is constructed by assembling an aluminum rod, 2 in 
diameter, over which is bonded an annular steel cylinder of 0.5 in wall thickness. Determine 
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Prob. 5


Prob. 6 

the maximum torsional shear stress when the composite cylinder is subjected to a torque 
of 10,000 in-lb. 

8. Sketch the shape of a membrane inflated through a round section containing an entrant 
keyway shape. 
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