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Introduction 

One particularly troublesome aspect of fracture, especially in high-strength and brittle materials, 
is its variability. The designer must be able to cope with this, and limit stresses to those which 
reduce the probability of failure to an acceptably low level. Selection of an acceptable level of 
risk is a difficult design decision itself, obviously being as close to zero as possible in cases where 
human safety is involved but higher in doorknobs and other inexpensive items where failure is 
not too much more than a nuisance. The following sections will not replace a thorough study 
of statistics, but will introduce at least some of the basic aspects of statistical theory needed 
in design against fracture. The text by Collins1 includes an extended treatment of statistical 
analysis of fracture and fatigue data, and is recommended for further reading. 

Basic statistical measures 

The value of tensile strength σf cited in materials property handbooks is usually the arithmetic 
mean, simply the sum of a number of individual strength measurements divided by the number 
of specimens tested: 

N1 
σf = σf,i (1)

N 
i=1 

where the overline denotes the mean and σf,i is the measured strength of the ith (out of N) 
individual specimen. Of course, not all specimens have strengths exactly equal to the mean; 
some are weaker, some are stronger. There are several measures of how widely scattered is the 
distribution of strengths, one important one being the sample standard deviation, a sort of  root  
mean square average of the individual deviations from the mean: 

� N � 1 
s = (σf − σx,i)

2 (2)
N − 1 

i=1 

The significance of s to the designer is usually in relation to how large it is compared to the 
mean, so the coefficient of variation, or C.V., is commonly used: 

Collins, J.A., Failure of Materials in Mechanical Design, Wiley, 1993. 
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σf 

s 
C.V. = 

This is often expressed as a percentage. Coefficients of variation for tensile strength are com­
monly in the range of 1–10%, with values much over that indicating substantial inconsistency 
in the specimen preparation or experimental error. 

Example 1 

In order to illustrate the statistical methods to be outlined in this Module, we will use a sequence of 
thirty measurements of the room-temperature tensile strength of a graphite/epoxy composite2. These  
data (in kpsi) are: 72.5, 73.8, 68.1, 77.9, 65.5, 73.23, 71.17, 79.92, 65.67, 74.28, 67.95, 82.84, 79.83, 80.52, 
70.65, 72.85, 77.81, 72.29, 75.78, 67.03, 72.85, 77.81, 75.33, 71.75, 72.28, 79.08, 71.04, 67.84, 69.2, 71.53. 
Another thirty measurements from the same source, but taken at 93◦C and  -59◦C, are given in Probs. 2 
and 3, and can be subjected to the same treatments as homework. 
There are several computer packages available for doing statistical calculations, and most of the 

procedures to be outlined here can be done with spreadsheets. The Microsoft Excel functions for mean 
and standard deviation are average() and stdev(), where the arguments are the range of cells containing 
the data. These give for the above data 

= 73.28, s = 4.63 (kpsi) 

The coefficient of variation is C.V.= (4.63/73.28) × 100% = 6.32%. 

σf 

The normal distribution 

A more complete picture of strength variability is obtained if the number of individual specimen 
strengths falling in a discrete strength interval Δσf is plotted versus σf in a histogram as shown 
in Fig. 1; the maximum in the histogram will be near the mean strength and its width will be 
related to the standard deviation. 

Figure 1: Histogram and normal distribution function for the strength data of Example 1. 

P. Shyprykevich, ASTM STP 1003, pp. 111–135, 1989. 
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As the number of specimens increases, the histogram can be drawn with increasingly finer 
Δσf increments, eventually forming a smooth probability distribution function, or “pdf”.  The  
mathematical form of this function is up to the material (and also the test method in some 
cases) to decide, but many phenomena in nature can be described satisfactorily by the normal, 
or Gaussian, function: 

1 −X2 σf − σf
f (X) =  √  exp , X  =  (3)

2π 2 s 

Here X is the standard normal variable, and is simply how many standard deviations an indi­√ 
vidual specimen strength is away from the mean. The factor 1/ 2π normalizes the function so 
that its integral is unity, which is necessary if the specimen is to have a 100% chance of failing 
at some stress. In this expression we have assumed that the measure of standard deviation de­
termined from Eqn. 2 based on a discrete number of specimens is acceptably close to the “true” 
value that would be obtained if every piece of material in the universe could somehow be tested. 
The normal distribution function f (X) plots as the “bell curve” familiar to all grade-

conscious students. Its integral, known as the cumulative distribution function or Pf (X), is 
also used commonly; its ordinate is the probability of fracture, also the fraction of specimens 
having a strength lower than the associated abscissal value. Since the normal pdf has been nor­
malized, the cumulative function rises with an S-shaped or sigmoidal shape to approach unity 
at large values of X. The two functions f(X) and  F  (X) are plotted in Fig. 2, and tabulated 
in Tables 1 and 2 of the Appendix attached to this module. (Often the probability of survival 
Ps = 1  −  Pf  is used as well; this curve begins at near unity and falls in a sigmoidal shape toward 
zero as the applied stress increases.) 

Figure 2: Differential f (X) and cumulative Pf (X) normal probability functions. 

One convenient means of determining whether or not a particular set of measurements is 
normally distributed involves using special graph paper (a copy is included in the Appendix) 
whose ordinate has been distorted to make the sigmoidal cumulative distribution Pf plot as a 
straight line. (Sometimes it is easier to work with straight lines on curvy paper than curvy lines 
on straight paper.) Experimental data are ranked from lowest to highest, and each assigned 
a rank based on the fraction of strengths having higher values. If the ranks are assigned as 
i/(N + 1), where i is the position of a datum in the ordered list and N is the number of 
specimens, the ranks are always greater than zero and less than one; this facilitates plotting. 
The degree to which these rank-strength data plot as straight lines on normal probability 

paper is then a visual measure of how well the data are described by a normal distribution. The 
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best-fit straight line through the points passes the 50% cumulative fraction line at the sample 
mean, and its slope gives the standard distribution. Plotting several of these lines, for instance 
for different processing conditions of a given material, is a convenient way to characterize the 
strength differences arising from the two conditions (See Prob. 2). 

Example 2 

For our thirty-specimen test population, the ordered and ranked data are: 

i σf,i Pf = i 
N+1 

1 65.50 0.0323 
2 65.67 0.0645 
3 67.03 0.0968 
4 67.84 0.1290 
5 67.95 0.1613 
6 68.10 0.1935 
7 69.20 0.2258 
8 70.65 0.2581 
9 71.04 0.2903 
10 71.17 0.3226 
11 71.53 0.3548 
12 71.75 0.3871 
13 72.28 0.4194 
14 72.29 0.4516 
15 72.5 0.4839 
16 72.85 0.5161 
17 72.85 0.5484 
18 73.23 0.5806 
19 73.80 0.6129 
20 74.28 0.6452 
21 75.33 0.6774 
22 75.78 0.7097 
23 77.81 0.7419 
24 77.81 0.7742 
25 77.90 0.8065 
26 79.08 0.8387 
27 79.83 0.8710 
28 79.92 0.9032 
29 80.52 0.9355 
30 82.84 0.9677 

When these are plotted using probability scaling on the ordinate, the graph in Fig. 3 is obtained. 

The normal distribution function has been characterized thoroughly, and it is possible to 
infer a great deal of information from it for strength distributions that are close to normal. For 
instance, the cumulative normal distribution function (cdf) tabulated in Table 2 of the Appendix 
shows that that 68.3% of all members of a normal distribution lie within ±1s of the mean, 95% 
lie within ±1.96s, and 99.865% lie within ±3s. It is common practice in much aircraft design 
to take σf − 3s as the safe fracture fracture strength; then almost 99.9% of all specimens will 
have a strength at least this high. This doesn’t really mean one out of every thousand airplane 
wings are unsafe; within the accuracy of the theory, 0.1% is a negligible number, and the 3s 
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Figure 3: Probabilty plot of cumulative probability of failure for the strength data of Example 1. 
Also shown are test data taken at higher and lower temperature. 

tolerance includes essentially the entire population3 . Having to reduce the average strength by 
3s in design can be a real penalty for advanced materials such as composites that have high 
strengths but also high variability due to their processing methods being relatively undeveloped. 
This is a major factor limiting the market share of these advanced materials. 
Beyond the visual check of the linearity of the probability plot, several “goodness-of-fit” 

tests are available to assess the degree to which the population can reasonably be defined by 
the normal (or some other) distribution function. The “Chi-square” test is often used for this 
purpose. Here a test statistic measuring how far the observed data deviate from those expected 
from a normal distribution, or any other proposed distribution, is 

� (observed − expected)2 
χ2 = 

expected 

N � (ni − Npi)2  

= 
Npii=1 

where ni is the number of specimens actually failing in a strength increment Δσf,i,N  is the 
total number of specimens, and pi is the probability expected from the assumed distribution of 
a specimen having having a strength in that increment.  

Example 3 

To apply the Chi-square test to our 30-test population, we begin by counting the number of strengths 
falling in selected strength increments, much as if we were constructing a histogram. We choose five 
increments to obtain reasonable counts in each increment. The number expected to fall in each increment 
is determined from the normal pdf table, and the square of the difference calculated. 

“Six-sigma” has become a popular goal in manufacturing, which means that only one part out of approximately 
a billion will fail to meet specification. 
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Lower Upper Observed Expected 
Limit Limit Frequency Frequency Chisquare 
0 69.33 7 5.9 0.198 

69.33 72.00 5 5.8 0.116 
72.00 74.67 8 6.8 0.214 
74.67 77.33 2 5.7 2.441 
77.33 ∞ 8 5.7 0.909 

χ2 = 3.878 

The number of degrees of freedom for this Chi-square test is 4; this is the number of increments less one, 
since we have the constraint that n1 + n2 + n3 + n5 = 30. 
Interpolating in the Chi-Square Distribution Table (Table 3 in the Appendix), we find that a fraction 

0.44 of normally distributed populations can be expected to have χ2 statistics of up to 3.88. Hence, it 
seems reasonable that our population can be viewed as normally distributed. 
Usually, we ask the question the other way around: is the computed χ2 so large that only a small 

fraction — say 5% — of normally distributed populations would have χ2 values that high or larger? If 
so, we would reject the hypothesis that our population is normally distributed. 
From the χ2 Table, we read that α = 0.05 for χ2 = 9.488, where α is the fraction of the χ2 population 

with values of χ2 greater than 9.488. Equivalently, values of χ2 above 9.488 would imply that there is 
less than a 5% chance that a population described by a normal distribution would have the computed χ2 

value. Our value of 3.878 is substantially less than this, and we are justified in claiming our data to be 
normally distributed. 

Several governmental and voluntary standards-making organizations have worked to develop 
standardized procedures for generating statistically allowable property values for design of crit­
ical structures4 . One such procedure defines the “B-allowable” strength as that level for which 
we have 95% confidence that 90% of all specimens will have at least that strength. (The use of 
two percentages here may be confusing. We mean that if we were to measure the strengths of 100 
groups each containing 10 specimens, at least 95 of these groups would have at least 9 specimens 
whose strengths exceed the B-allowable.) In the event the normal distribution function is found 
to provide a suitable description of the population, the B-basis value can be computed from the 
mean and standard deviation using the formula 

B = σf − kB s 

where kb is n−1/2 times the 95th quantile of the “noncentral t-distribution;” this factor is tabu­
lated, but can be approximated by the formula 

kb = 1.282 + exp(0.958 − 0.520 ln N + 3.19/N ) 

Example 4 

In the case of the previous 30-test example, kB is computed to be 1.78, so this is less conservative than 
the 3s guide. The B-basis value is then 

B = 73.28 − (1.78)(4.632) = 65.05 

Having a distribution function available lets us say something about the confidence we can 
have in how reliably we have measured the mean strength, based on a necessarily limited number 

Military Handbook 17B, Army Materials Technology Laboratory, Part I, Vol. 1, 1987. 
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of individual strength tests. A famous and extremely useful result in mathematical statistics 
states that, if the mean of a distribution is measured N times, the distribution of the means will 
have its own standard deviation sm that is related to the mean of the underlying distribution s 
and the number of determinations, N as 

sm = 
s 
√ 
N 

(4) 

This result can be used to establish confidence limits. Since 95% of all measurements of a 
normally distributed population lie within 1.96 standard deviations from the mean, the ratio √ 
±1.96s/ N is the range over which we can expect 95 out of 100 measurements of the mean to 
fall. So even in the presence of substantial variability we can obtain measures of mean strength 
to any desired level of confidence; we simply make more measurements to increase the value of N 
in the above relation. The “error bars” often seen in graphs of experimental data are not always 
labeled, and the reader must be somewhat cautious: they are usually standard deviations, but 
they may indicate maximum and minimum values, and occasionally they are 95% confidence 
limits. The significance of these three is obviously quite different. 

Example 5 

Equation 4 tells us that were we to repeat the 30-test sequence of the previous example over and over 
(obviously with new specimens each time), 95% of the measured sample means would lie within the 
interval 

(1.96)(4.632) (1.96)(4.632)
73.278 − √ , 73.278 + √ = 71.62, 74.94 

30 30 

The t distribution 

The “t” distribution, tabulated in Table 4 of the Appendix, is similar to the normal distribution, 
plotting as a bell-shaped curve centered on the mean. It has several useful applications to 
strength data. When there are few specimens in the sample, the t-distribution should be used in 
preference to the normal distribution in computing confidence limits. As seen in the table, the 
t-value for the 95th percentile and the 29 degrees of freedom of our 30-test sample in Example 3 
is 2.045. (The number of degrees of freedom is one less than the total specimen count, since the 
sum of the number of specimens having each recorded strength is constrained to be the total 
number of specimens.) The 2.045 factor replaces 1.96 in this example, without much change in 
the computed confidence limits. As the number of specimens increases, the t-value approaches 
1.96. For fewer specimens the factor deviates substantially from 1.96; it is 2.571 for n = 5  and  
3.182 for n = 3.  
The t distribution is also useful in deciding whether two test samplings indicate significant 

differences in the populations they are drawn from, or whether any difference in, say, the means 
of the two samplings can be ascribed to expected statistical variation in what are two essentially 
identical populations. For instance, Fig. 3 shows the cumulative failure probability for graphite-
epoxy specimens tested at three different temperatures, and it appears that the mean strength 
is reduced somewhat by high temperatures and even more by low temperatures. But are these 
differences real, or merely statistical scatter? 
This question can be answered by computing a value for t using the means and standard 

deviations of any two of the samples, according to the formula 
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|σf1 − σf2|
t = � (5) 

2 2s s1 2+ n1−1 n2−1 

This statistic is known to have a t distribution if the deviations s1 and s2 are not too different. 
The mean and standard deviation of the −59◦C data shown in Fig. 3 are 65.03 and 5.24 respec­
tively. Using Eqn. 5 to compare the room-temperature (23◦C) and −59◦C data, the t-statistic 
is 

(73.28 − 65.03)
t = � = 6.354 

(4.63)2 (5.24)2 
+29 29 

From Table 4 in the Appendix, we now look up the value of t for 29 degrees of freedom corre­
sponding to 95% (or some other value, as desired) of the population. We do this by scanning 
the column for F (t) = 0.975 rather than 0.95, since the t distribution is symmetric and another 
0.025 fraction of the population lies beyond t = −0.975. The t value for 95% (F (t) = 0.975) 
and 29 degrees of freedom is 2.045. 
This result means that were we to select repeatedly any two arbitrary 30-specimen samples 

from a single population, 95% of these selections would have t-statistics as computed with Eqn. 5 
less than 2.045; only 5% would produce larger values of t. Since the 6.354 t-statistic for the 
−59◦C and  23◦C samplings is much greater than 2.045, we can conclude that it is very unlikely 
that the two sets of data are from the same population. Conversely, we conclude that the two 
datasets are in fact statistically independent, and that temperature has a statistically significant 
effect on the strength. 

The Weibull distribution 

Large specimens tend to have lower average strengths than small ones, simply because large ones 
are more likely to contain a flaw large enough to induce fracture at a given applied stress. This 
effect can be measured directly, for instance by plotting the strengths of fibers versus the fiber 
circumference as in Fig. 4. For similar reasons, brittle materials tend to have higher strengths 
when tested in flexure than in tension, since in flexure the stresses are concentrated in a smaller 
region near the outer surfaces. 

Figure 4: Effect of circumference c on fracture strength σf for sapphire whiskers. From 
L.J. Broutman and R.H. Krock, Modern Composite Materials, Addison-Wesley, 1967. 

8 



� � � � 

� �

� � 

The hypothesis of the size effect led to substantial development effort in the statistical 
analysis community of the 1930’s and 40’s, with perhaps the most noted contribution being that 
of W. Weibull5 in 1939. Weibull postulated that the probability of survival at a stress σ, i.e. 
the probability that the specimen volume does not contain a flaw large enough to fail under the 
stress σ, could be written in the form 

σ m

Ps(σ) = exp  −  (6)
σ0 

Weibull selected the form of this expression for its mathematical convenience rather than some 
fundamental understanding, but it has been found over many trials to describe fracture statistics 
well. The parameters σ0 and m are adjustable constants; Fig. 5 shows the form of the Weibull 
function for two values of the parameter m. Materials with greater variability have smaller 
values of m; steels have m ≈ 100, while ceramics have m ≈ 10. This parameter can be related 
to the coefficient of variation; to a reasonable approximation, m ≈ 1.2/C.V. 

8 

Figure 5: The Weibull function. 

A variation on the normal probability paper graphical method outlined earlier can be devel­
oped by taking logarithms of Eqn. 6: 

σ m 

ln Ps = − 
σ0 

σ 
ln(ln Ps) =  −m  ln 

σ0 

Hence the double logarithm of the probability of exceeding a particular strength σ versus the 
logarithm of the strength should plot as a straight line with slope m. 

Example 6 

Again using the 30-test sample of the previous examples, an estimate of the σ0 parameter can be obtained 
by plotting the survival probability (1 minus the rank) and noting the value of σf at which Ps drops to 
1/e = 0.37; this gives σ0 ≈ 74. (A more accurate regression method gives 75.46.) A tabulation of the 
double logarithm of Ps against the logarithm of σf /σ0 is then 

See B. Epstein, J. Appl. Phys., Vol. 19, p. 140, 1948 for a useful review of the statistical treatment of the 
size effect in fracture, and for a summary of extreme-value statistics as applied to fracture problems. 

9 

5



i σf,i ln ln(1/Ps) ln(σf,i/σ0) 
1 65.50 -3.4176 -0.1416 
2 65.67 -2.7077 -0.1390 
3 67.03 -2.2849 -0.1185 
4 67.84 -1.9794 -0.1065 
5 67.95 -1.7379 -0.1048 
6 68.10 -1.5366 -0.1026 
7 69.20 -1.3628 -0.0866 
8 70.65 -1.2090 -0.0659 
9 71.04 -1.0702 -0.0604 
10 71.17 -0.9430 -0.0585 
11 71.53 -0.8250 -0.0535 
12 71.75 -0.7143 -0.0504 
13 72.28 -0.6095 -0.0431 
14 72.29 -0.5095 -0.0429 
15 72.50 -0.4134 -0.0400 
16 72.85 -0.3203 -0.0352 
17 72.85 -0.2295 -0.0352 
18 73.23 -0.1404 -0.0300 
19 73.80 -0.0523 -0.0222 
20 74.28 0.0355 -0.0158 
21 75.33 0.1235 -0.0017 
22 75.78 0.2125 0.0042 
23 77.81 0.3035 0.0307 
24 77.81 0.3975 0.0307 
25 77.90 0.4961 0.0318 
26 79.08 0.6013 0.0469 
27 79.83 0.7167 0.0563 
28 79.92 0.8482 0.0574 
29 80.52 1.0083 0.0649 
30 82.84 1.2337 0.0933 

The Weibull plot of these data is shown in Fig. 6; the regression slope is 17.4. 

Figure 6: Weibull plot.
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Similarly to the B-basis design allowable for the normal distribution, the B-allowable can 
also be computed from the Weibull parameters m and σ0. The procedure is6: 

−V 
B = Q exp √ 

m N 

where Q and V are 

Q = σ0 (0.10536)
1/m 

5.1 
V = 3.803 + exp 1.79 − 0.516 ln(N) +  

N  

Example 7 

The B-allowable is computed for the 30-test population as 

1/17.4m
Q = 75.46 (0.10536) = 66.30 

� � 
5.1 

V = 3.803 + exp 1.79 − 0.516 ln(30) + = 5.03 
30 

−5.03 
B = 66.30 exp √ = 62.89 

17.4 30 

This value is somewhat lower than the 65.05 obtained as the normal-distribution B-allowable, so in this 
case the Weibull method is a bit more lenient. 

The Weibull equation can be used to predict the magnitude of the size effect. If for instance 
we take a reference volume V0 and express the volume of an arbitrary specimen as V = nV0, 
then the probability of failure at volume V is found by multiplying Ps(V ) by itself n times: 

Ps(V ) = [Ps(V0)]
n = [Ps(V0)]

V/V0  

V σ m 

Ps(V ) =  exp  −  (7)
V0 σ0 

Hence the probability of failure increases exponentially with the specimen volume. This is 
another danger in simple scaling, beyond the area vs. volume argument we outlined in Module 1. 

Example 8 

Solving Eqn. 7, the stress for a given probability of survival is 

1 
n− ln(Ps)

σ = σ0
(V/V0)  

Using σ0 = 75.46 and n = 17.4 for the 30-specimen population, the stress for Ps = .5 and  V/V0  = 1  
is σ = 73.9kpsi. If now the specimen size is doubled, so that V/V0  = 2, the probability of survival at 
this stress as given by Eqn. 7 drops to Ps = 0.25. If on the other hand the specimen size is halved 
(V/V0  = 0.5), the probability of survival rises to Ps = 0.71. 

S.W. Rust, et al., ASTM STP 1003, p. 136, 1989. (Also Military Handbook 17.) 
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A final note of caution, a bit along the lines of the famous Mark Twain aphorism about 
there being “lies, damned lies, and statistics:” it is often true that populations of simple tensile 
or other laboratory specimens can be well described by classical statistical distributions. This 
should not be taken to imply that more complicated structures such as bridges and airplanes can 
be so neatly described. For instance, one aircraft study cited by Gordon7 found failures to occur 
randomly and uniformly over a wide range extending both above and below the statistically-
based design safe load. Any real design, especially for structures that put human life at risk, 
must be checked in every reasonable way the engineer can imagine. This will include proof 
testing to failure, consideration of the worst possible environmental factors, consideration of 
construction errors resulting from difficult-to-manufacture designs, and so on almost without 
limit. Experience, caution and common sense will usually be at least as important as elaborate 
numerical calculations. 

Problems 

1. Ten strength measurements have produced a mean tensile strength of σf = 100 MPa, with 
95% confidence limits of ±8 MPa. How many additional measurements would be necessary 
to reduce the confidence limits by half, assuming the mean and standard deviation of the 
measurements remains unchanged? 

2. The thirty	measurements of the tensile strength of graphite/epoxy composite listed in 
Example 1 were made at room temperature. Thirty additional tests conducted at 93◦C 
gave the values (in kpsi): 63.40, 69.70, 72.80, 63.60, 71.20, 72.07, 76.97, 70.94, 76.22, 
64.65, 62.08, 61.53, 70.53, 72.88, 74.90, 78.61, 68.72, 72.87, 64.49, 75.12, 67.80, 72.68, 
75.09, 67.23, 64.80, 75.84, 63.87, 72.46, 69.54, 76.97. For these data: 

(a) Determine the arithmetic mean, standard deviation, and coefficient of variation. 

(b) Determine the 95% confidence limits on the mean strength. 

(c) Determine whether the average strengths at 23◦C and  93◦are statistically different. 

(d) Determine the normal and Weibull B-allowable strengths. 

(e) Plot the cumulative probability of failure Pf vs. the failure stress on normal proba­
bility paper. 

(f) Do the data appear to be distributed normally, based on the χ2 test? 

(g) Plot the cumulative probability of survival Ps vs. the failure stress on Weibull prob­
ability paper. 

(h) Determine the Weibull parameters σ0 and m. 

(i) Estimate how the mean strength would change if the specimens were made ten times 
smaller, or ten times larger. 

3. Repeat the previous problem, but using data for -59◦C: 55.62, 55.91, 56.73, 57.54, 58.28, 
59.23, 60.39, 60.62, 61.1, 62.1, 63.69, 63.8, 64.7, 65.2, 65.33, 66.39, 66.43, 66.72, 67.05, 
67.76, 68.84, 69.15, 69.3, 69.37, 69.82, 70.94, 71.39, 71.74, 72.2, 73.46. 

J.E. Gordon, Structures, Plenum Press, 1978. 
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Appendix - Statistical Tables and Paper 

Following are several standard tables and graph papers that can be used in performing statistical 
calculations, in the event suitable software is not available. 

1. Normal Distribution Table 

2. Cumulative Normal Distribution Table 

3. Chi-Square Table 

4. t-Distribution 

5. Normal Probability Paper 

6. Weibull Paper 
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1. Normal Distribution 

X 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 0.3989 0.3989 0.3989 0.3988 0.3986 0.3984 0.3982 0.3980 0.3977 0.3973 
0.1 0.3970 0.3965 0.3961 0.3956 0.3951 0.3945 0.3939 0.3932 0.3925 0.3918 
0.2 0.3910 0.3902 0.3894 0.3885 0.3876 0.3867 0.3857 0.3847 0.3836 0.3825 
0.3 0.3814 0.3802 0.3790 0.3778 0.3765 0.3752 0.3739 0.3725 0.3712 0.3697 
0.4 0.3683 0.3668 0.3653 0.3637 0.3621 0.3605 0.3589 0.3572 0.3555 0.3538 
0.5 0.3521 0.3503 0.3485 0.3467 0.3448 0.3429 0.3410 0.3391 0.3372 0.3352 
0.6 0.3332 0.3312 0.3292 0.3271 0.3251 0.3230 0.3209 0.3187 0.3166 0.3144 
0.7 0.3123 0.3101 0.3079 0.3056 0.3034 0.3011 0.2989 0.2966 0.2943 0.2920 
0.8 0.2897 0.2874 0.2850 0.2827 0.2803 0.2780 0.2756 0.2732 0.2709 0.2685 
0.9 0.2661 0.2637 0.2613 0.2589 0.2565 0.2541 0.2516 0.2492 0.2468 0.2444 
1.0 0.2420 0.2396 0.2371 0.2347 0.2323 0.2299 0.2275 0.2251 0.2227 0.2203 
1.1 0.2179 0.2155 0.2131 0.2107 0.2083 0.2059 0.2036 0.2012 0.1989 0.1965 
1.2 0.1942 0.1919 0.1895 0.1872 0.1849 0.1826 0.1804 0.1781 0.1758 0.1736 
1.3 0.1714 0.1691 0.1669 0.1647 0.1626 0.1604 0.1582 0.1561 0.1539 0.1518 
0.4 0.1497 0.1476 0.1456 0.1435 0.1415 0.1394 0.1374 0.1354 0.1334 0.1315 
1.5 0.1295 0.1276 0.1257 0.1238 0.1219 0.1200 0.1182 0.1163 0.1145 0.1127 
1.6 0.1109 0.1092 0.1074 0.1057 0.1040 0.1023 0.1006 0.0989 0.0973 0.0957 
I .7 0.0940 0.0925 0.0909 0.0893 0.0878 0.0863 0.0848 0.0833 0.0818 0.0804 
1.8 0.0790 0.0775 0.0761 0.0748 0.0734 0.0721 0.0707 0.0694 0.0681 0.0669 
1.9 0.0656 0.0644 0.0632 0.0620 0.0608 0.0596 0.0584 0.0573 0.0562 0.0551 
2.0 0.0540 0.1529 0.0519 0.0508 0.0498 0.0488 0.0478 0.0468 0.0459 0.0449 
2. I 0.0440 0.0431 0.0422 0.0413 0.0404 0.0396 0.0387 0.0379 0.0371 0.0363 
2.2 0.0355 0.0347 0.0339 0.0332 0.0325 0.0317 0.0310 0.0303 0.0297 0.0290 
2.3 0.0283 0.0277 0.0270 0.0264 0.0258 0.0252 0.0246 0.0241 0.0235 0.0229 
2.4 0.0224 0.0219 0.0213 0.0208 0.0203 0.0198 0.0194 0.0189 0.0184 0.0180 
2.5 0.0175 0.0171 0.0167 0.0163 0.0158 0.0154 0.0151 0.0147 0.0143 0.0139 
2.6 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110 0.0107 
2.7 0.0104 0.0101 0.0099 0.0096 0.0093 0.0091 0.0088 0.0086 0.0084 0.0081 
2.8 0.0079 0.0077 0.0075 0.0073 0.0071 0.0069 0.0067 0.0065 0.0063 0.0061 
2.9 0.0060 0.0058 0.0056 0.0055 0.0053 0.0051 0.0050 0.0048 0.0047 0.0046 
3.0 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036 0.0035 0.0034 
3.1 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0025 0.0025 
3.2 0.0024 0.0023 0.0022 0.0022 0.0021 0.0020 0.0020 0.0019 0.0018 0.0018 
3.3 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 0.0013 0.0013 
3.4 0.0012 0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009 
3.5 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 0.0007 0.0007 0.0007 0.0006 
3.6 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0004 
3.7 0.0004 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 0.0003 0.0003 0.0003 
3.8 0.0003 0.0003 0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 
3.9 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001 



2. Cumulative Normal Distribution 

X 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Maximum C 2 values for a = 
Degrees of 

Freedom 0.995 0.990 0.975 0.950 0.900 0.750 0.500 0.250 0.100 0.050 0.025 0.010 0.005 
0.0000393 0.000157 0.000982 0.00393 0.0158 0.102 0.455 1.32 2.71 3.84 5.02 6.63 7.88 

0.0100 0.0201 0.0506 0.103 0.211 0.575 1.390 2.77 4.61 5.99 7.38 9.21 10.6 
0.0717 0.115 0.216 0.352 0.584 1.21 2.37 4.11 6.25 7.81 9.35 11.3 12.8 
0.207 0.297 0.484 0.711 1.06 1.92 3.36 5.39 7.78 9.49 11.1 13.3 14.9 
0.412 0.554 0.831 1.15 1.61 2.67 4.35 6.63 9.24 11.1 12.8 15.1 16.7 
0.676 0.872 1.24 1.64 2.20 3.45 5.35 7.84 10.6 12.6 14.4 16.8 18.5 
0.989 1.24 1.69 2.17 2.83 4.25 6.35 9.04 12.0 14.1 16.0 18.5 20.3 
1.34 1.65 2.18 2.73 3.49 5.07 7.34 10.2 13.4 15.5 17.5 20.1 22.0 
1.73 2.09 2.70 3.33 4.17 5.90 8.34 11.4 14.7 16.9 19.0 21.7 23.6 
2.16 2.56 3.25 3.94 4.87 6.74 9.34 12.5 16.0 18.3 20.5 23.2 25.2 
2.60 3.05 3.82 4.57 5.58 7.58 10.3 13.7 17.3 19.7 21.9 24.7 26.8 
3.07 3.57 4.40 5.23 6.30 8.44 11.3 14.8 18.5 21.0 23.3 26.2 28.3 
3.57 4.11 5.01 5.89 7.04 9.30 12.3 16.0 19.8 22.4 24.7 27.7 29.8 
4.07 4.66 5.63 6.57 7.79 10.2 13.3 17.1 21.1 23.7 26.1 29.1 31.3 
4.60 5.23 6.26 7.26 8.55 11.0 14.3 18.2 22.3 25.0 27.5 30.6 32.8 
5.14 5.81 6.91 7.96 9.31 11.9 15.3 19.4 23.5 26.3 28.8 32.0 34.3 
5.70 6.41 7.56 8.67 10.1 12.8 16.3 20.5 24.8 27.6 30.2 33.4 35.7 
6.26 7.01 8.23 9.39 10.9 13.7 17.3 21.6 26.0 28.9 31.5 34.8 37.2 
6.84 7.63 8.91 10.1 11.7 14.6 18.3 22.7 27.2 30.1 32.9 36.2 38.6 
7.43 8.26 9.59 10.9 12.4 15.5 19.3 23.8 28.4 31.4 34.2 37.6 40.0 
8.03 8.90 10.3 11.6 13.2 16.3 20.3 24.9 29.6 32.7 35.5 38.9 41.4 
8.64 9.54 11.0 12.3 14.0 17.2 21.3 26.0 30.8 33.9 36.8 40.3 42.8 
9.26 10.20 11.7 13.1 14.8 18.1 22.3 27.1 32.0 35.2 38.1 41.6 44.2 
9.89 10.90 12.4 13.8 15.7 19.0 23.3 28.2 33.2 36.4 39.4 43.0 45.6 

10.50 11.50 13.1 14.6 16.5 19.9 24.3 29.3 34.4 37.7 40.6 44.3 46.9 
11.20 12.20 13.8 15.4 17.3 20.8 25.3 30.4 35.6 38.9 41.9 45.6 48.3 
11.80 12.90 14.6 16.2 18.1 21.7 26.3 31.5 36.7 40.1 43.2 47.0 49.6 
12.50 13.60 15.3 16.9 18.9 22.7 27.3 32.6 37.9 41.3 44.5 48.3 51.0 
13.10 14.30 16.0 17.7 19.8 23.6 28.3 33.7 39.1 42.6 45.7 49.6 52.3 
13.80 15.00 16.8 18.5 20.6 24.5 29.3 34.8 40.3 43.8 47.0 50.9 53.7 



t -Distribution 
Percentile 

Degrees of 
Freedom 50 80 90 95 98 99 99.90 

1 1.000 3.078 6.314 12.706 31.821 63.657 636.610 
2 0.816 1.886 2.920 4.303 6.965 9.925 31.598 
3 0.765 1.638 2.353 3.182 4.541 5.841 12.941 
4 0.741 1.533 2.132 2.776 3.747 4.604 8.610 
5 0.727 1.476 2.015 2.571 3.365 4.032 6.859 
6 0.718 1.440 1.943 2.447 3.143 3.707 5.959 
7 0.711 1.415 1.895 2.365 2.998 3.499 5.405 
8 0.706 1.397 1.860 2.306 2.896 3.355 5.041 
9 0.703 1.383 1.833 2.262 2.821 3.250 4.781 

10 0.700 1.372 1.812 2.228 2.764 3.169 4.587 
11 0.697 1.363 1.796 2.201 2.718 3.106 4.437 
12 0.695 1.356 1.782 2.179 2.681 3.055 4.318 
13 0.694 1.350 1.771 2.160 2.650 3.012 4.221 
14 0.692 1.345 1.761 2.145 2.624 2.977 4.140 
15 0.691 1.341 1.753 2.131 2.602 2.947 4.073 
16 0.690 1.337 1.746 2.120 2.583 2.921 4.015 
17 0.689 1.333 1.740 2.110 2.567 2.898 3.965 
18 0.688 1.330 1.734 2.101 2.552 2.878 3.922 
19 0.688 1.328 1.729 2.093 2.539 2.861 3.883 
20 0.687 1.325 1.725 2.086 2.528 2.845 3.850 
21 0.686 1.323 1.721 2.080 2.518 2.831 3.819 
22 0.686 1.321 1.717 2.074 2.508 2.819 3.792 
23 0.685 1.319 1.714 2.069 2.500 2.807 3.767 
24 0.685 1.318 1.711 2.064 2.492 2.797 3.745 
25 0.684 1.316 1.708 2.060 2.485 2.787 3.725 
26 0.684 1.315 1.706 2.056 2.479 2.779 3.707 
27 0.684 1.314 1.703 2.052 2.473 2.771 3.690 
28 0.683 1.313 1.701 2.048 2.467 2.763 3.674 
29 0.683 1.311 1.699 2.045 2.462 2.756 3.659 
30 0.683 1.310 1.697 2.042 2.457 2.750 3.646 
40 0.681 1.303 1.684 2.021 2.423 2.704 3.551 
60 0.679 1.296 1.671 2.000 2.390 2.660 3.460 

120 0.677 1.289 1.658 1.980 2.358 2.617 3.373 
infinity 0.674 1.282 1.645 1.960 2.326 2.576 3.291 



David Roylance
5. Normal Probability Paper



David Roylance
6. Weibull Paper


	mit.edu
	stat.dvi


