
Constitutive Equations 

David Roylance

Department of Materials Science and Engineering


Massachusetts Institute of Technology

Cambridge, MA 02139


October 4, 2000


Introduction 

The modules on kinematics (Module 8), equilibrium (Module 9), and tensor transformations 
(Module 10) contain concepts vital to Mechanics of Materials, but they do not provide insight on 
the role of the material itself. The kinematic equations relate strains to displacement gradients, 
and the equilibrium equations relate stress to the applied tractions on loaded boundaries and also 
govern the relations among stress gradients within the material. In three dimensions there are 
six kinematic equations and three equilibrum equations, for a total of nine. However, there are 
fifteen variables: three displacements, six strains, and six stresses. We need six more equations, 
and these are provided by the material’s consitutive relations: six expressions relating the stresses 
to the strains. These are a sort of mechanical equation of state, and describe how the material 
is constituted mechanically. 
With these constitutive relations, the vital role of the material is reasserted: The elastic 

constants that appear in this module are material properties, subject to control by processing 
and microstructural modification as outlined in Module 2. This is an important tool for the 
engineer, and points up the necessity of considering design of the material as well as with the 
material. 

Isotropic elastic materials 

In the general case of a linear relation between components of the strain and stress tensors, we 
might propose a statement of the form 

�ij = Sijkl σkl 

where the Sijkl is a fourth-rank tensor. This constitutes a sequence of nine equations, since each 
component of �ij is a linear combination of all the components of σij . For instance: 

�23 = S2311 σ11 + S2312 σ12 + · · ·+  S2333 �33 

Based on each of the indices of Sijkl taking on values from 1 to 3, we might expect a total of 81 
independent components in S. However, both �ij and σij are symmetric, with six rather than 
nine independent components each. This reduces the number of S components to 36, as can be 
seen from a linear relation between the pseudovector forms of the strain and stress: 
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⎧ ⎫ ⎧ ⎫ ⎪ �x ⎪ ⎡ ⎤⎪ σx ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ · · ·  ⎪ ⎪ ⎪ �y ⎪ S11 S12 S16 ⎪ σy ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎨ �z 
⎬ ⎢ S21 S22 · · ·  S26 ⎥⎨ σz 

⎬ ⎢ ⎥= ⎢ . . . . ⎥ (1) ⎪ ⎪ . . . . ⎪ ⎪ ⎪ γyz ⎪ ⎣ . . . . ⎦⎪ τyz ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ · · ·  ⎪ ⎪ ⎪ γxz ⎪ S61 S26 S66 ⎪ τxz  ⎪ ⎩ ⎭ ⎩ ⎭ 
γxy τxy 

It can be shown1 that the S matrix in this form is also symmetric. It therefore it contains only 
21 independent elements, as can be seen by counting the elements in the upper right triangle of 
the matrix, including the diagonal elements (1 + 2 + 3 + 4 + 5 + 6 = 21). 
If the material exhibits symmetry in its elastic response, the number of independent elements 

in the S matrix can be reduced still further. In the simplest case of an isotropic material, whose 
stiffnesses are the same in all directions, only two elements are independent. We have earlier 
shown that in two dimensions the relations between strains and stresses in isotropic materials 
can be written as 

�x = E 
1 (σx − νσy) 

�y = E 
1 (σy − νσx) (2) 

γxy = G 
1 τxy 

along with the relation 

E 
G = 

2(1 + ν) 

Extending this to three dimensions, the pseudovector-matrix form of Eqn. 1 for isotropic mate
rials is 

⎧ ⎫ ⎡ 1 −ν −ν ⎤⎧ ⎫ ⎪ �x ⎪ 0 0 0 ⎪ σx ⎪ ⎪ ⎪ E E E ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢ −ν 1 −ν ⎥⎪ ⎪ ⎪ �y ⎪ 0 0 0 ⎪ σy ⎪ ⎪ ⎪ ⎢ E E E ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎢ −ν −ν 1 ⎥⎨ ⎬�z ⎢ E E E 0 0 0 ⎥ σz = ⎢ 1 ⎥ (3) ⎪ ⎪ ⎢ 0 0 0 0 0 ⎥⎪ ⎪ ⎪ γyz ⎪ ⎪ τyz ⎪ ⎪ ⎪ ⎢ G ⎥⎪ ⎪ ⎪ ⎪ 1 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ γxz ⎪ ⎣ 0 0 0 0 0 ⎦⎪ τxz  ⎪ ⎪ ⎪ G ⎪ ⎪ ⎩ ⎭ 1 ⎩ ⎭ 
γxy 0 0 0 0 0 G τxy 

The quantity in brackets is called the compliance matrix of the material, denoted S or Sij. It  
is important to grasp the physical significance of its various terms. Directly from the rules of 
matrix multiplication, the element in the ith row and jth column of Sij is the contribution of the 
jth stress to the ith strain. For instance the component in the 1,2 position is the contribution 
of the y-direction stress to the x-direction strain: multiplying σy by 1/E gives the y-direction 
strain generated by σy, and then multiplying this by −ν gives the Poisson strain induced in 
the x direction. The zero elements show the lack of coupling between the normal and shearing 
components. 
The isotropic constitutive law can also be written using index notation as (see Prob. 1) 

1 +  ν ν 
�ij = σij − δij σkk (4)

E E 
where here the indicial form of strain is used and G has been eliminated using G = E/2(1 + ν) 
The symbol δij is the Kroenecker delta, described in the Module on Matrix and Index Notation. 

G.M. Mase, Schaum’s Outline of Theory and Problems of Continuum Mechanics, McGraw-Hill, 1970. 
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If we wish to write the stresses in terms of the strains, Eqns. 3 can be inverted. In cases of 
plane stress (σz = τxz = τyz = 0), this yields 

⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎪ ⎨ σx ⎪ ⎬ E 
1 ν 0 ⎪ ⎨ �x ⎪ ⎬ 

⎪ ⎩ 
σy 
τxy 
⎪ ⎭ 
= 
1 − ν2 

⎢ ⎣ ν 1 
0 0  

0 
(1  −  ν)/2  

⎥  ⎦  ⎪  ⎩  
�y  

γxy 
⎪ ⎭ 

(5) 

where again G has been replaced by E/2(1 + ν). Or, in abbreviated notation: 

σ = D� (6) 

where D = S−1 is the stiffness matrix. 

Hydrostatic and distortional components 

Figure 1: Hydrostatic compression. 

A state of hydrostatic compression, depicted in Fig. 1, is one in which no shear stresses exist 
and where all the normal stresses are equal to the hydrostatic pressure: 

σx = σy = σz = −p 

where the minus sign indicates that compression is conventionally positive for pressure but 
negative for stress. For this stress state it is obviously true that 

1 1 
(σx + σy + σz) =  σkk = −p
3 3 

so that the hydrostatic pressure is the negative mean normal stress. This quantity is just one 
third of the stress invariant I1, which is a reflection of hydrostatic pressure being the same in 
all directions, not varying with axis rotations. 
In many cases other than direct hydrostatic compression, it is still convenient to “dissociate” 

the hydrostatic (or “dilatational”) component from the stress tensor: 

1 
σij = σkkδij +Σij (7)

3 

Here Σij is what is left over from σij after the hydrostatic component is subtracted. The Σij 
tensor can be shown to represent a state of pure shear, i.e. there exists an axis transformation 
such that all normal stresses vanish (see Prob. 5). The Σij is called the distortional, or deviatoric, 
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component of the stress. Hence all stress states can be thought of as having two components as 
shown in Fig. 2, one purely extensional and one purely distortional. This concept is convenient 
because the material responds to these stress components is very different ways. For instance, 
plastic and viscous flow is driven dominantly by distortional components, with the hydrostatic 
component causing only elastic deformation. 

Figure 2: Dilatational and deviatoric components of the stress tensor.


Example 1 

Consider the stress state 
⎡ ⎤  
5 6 7  ⎣ ⎦σ =	 6 8 9  ,  GPa 
7 9 2  

The mean normal stress is σkk /3  =  (5 + 8 + 2)/3 = 5, so the stress decomposition is 
⎡ ⎤ ⎡ ⎤ 
5 0 	0  0 6 7

1 ⎣ ⎦ ⎣ ⎦σ = σkk δij +Σij = 0 5 0 + 6 3 9  
3 

0 0 	5  7 9  −3  

It is not obvious that the deviatoric component given in the second matrix represents pure shear, since 
there are nonzero components on its diagonal. However, a stress transformation using Euler angles 
ψ = φ = 0, θ  =  −9.22◦ gives the stress state 

⎡	 ⎤ 
0.00 4.80 7.87 

Σ� = ⎣ 4.80 0.00 9.49 ⎦ 

7.87 9.49 0.00 

The hydrostatic component of stress is related to the volumetric strain through the modulus 
of compressibility (−p = KΔV/V ), so 

1 
σkk = K �kk	 (8)
3 

Similarly to the stress, the strain can also be dissociated as 

1 
�ij = �kkδij + eij

3 
where eij is the deviatoric component of strain. The deviatoric components of stress and strain 
are related by the material’s shear modulus: 

Σij = 2Geij	 (9) 
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where the factor 2 is needed because tensor descriptions of strain are half the classical strains

for which values of G have been tabulated. Writing the constitutive equations in the form of

Eqns. 8 and 9 produces a simple form without the coupling terms in the conventional E-ν form.


Example 2 

Using the stress state of the previous example along with the elastic constants for steel (E = 207 GPa, ν  =  
0.3,K  =  E/3(1 − 2ν) = 173 GPa, G  =  E/2(1 + ν) =  79.6 Gpa), the dilatational and distortional 
components of strain are 

⎡ ⎤ 

δij �kk = 
δij σkk 

3K 
= ⎣ 

0.0289 
0 
0 

0 
0.0289 
0 

0 
0 

0.0289 

⎦ 

⎡ ⎤ 
0 0.0378 0.0441

Σij ⎣ ⎦eij = = 0.0378 0.0189 0.0567 
2G 

0.0441 0.0567 −0.0189 

The total strain is then 
⎡ ⎤ 
0.00960 0.0378 0.0441

1 ⎣ ⎦�ij = �kkδij + eij = 0.0378 0.0285 0.0567 
3 

0.0441 0.0567 −0.00930 

If we evaluate the total strain using Eqn. 4, we have 
⎡ ⎤ 
0.00965 0.0377 0.0440

1 +  ν ν ⎣ ⎦�ij = σij − δij σkk = 0.0377 0.0285 0.0565 
E E 

0.0440 0.0565 −0.00915 

These results are the same, differing only by roundoff error. 

Finite strain model 

When deformations become large, geometrical as well as material nonlinearities can arise that 
are important in many practical problems. In these cases the analyst must employ not only a 
different strain measure, such as the Lagrangian strain described in Module 8, but also different 
stress measures (the “Second Piola-Kirchoff stress” replaces the Cauchy stress when Lagrangian 
strain is used) and different stress-strain constitutive laws as well. A treatment of these for
mulations is beyond the scope of these modules, but a simple nonlinear stress-strain model 
for rubbery materials will be outlined here to illustrate some aspects of finite strain analysis. 
The text by Bathe2 provides a more extensive discussion of this area, including finite element 
implementations. 
In the case of small displacements, the strain �x is given by the expression: 

1 
�x = [σx − ν(σy + σz)]

E 
For the case of elastomers with ν = 0.5, this can be rewritten in terms of the mean stress 
σm = (σx  +  σy  +  σz)/3 as:  

3  
2�x  = (σx  −  σm)

E

K.-J. Bathe, Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982. 
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For the large-strain case, the following analogous stress-strain relation has been proposed: 

λ2 
3 

− σ ∗ x = 1 + 2�x  = (σx m) (10) 
E

where here �x is the Lagrangian strain and σ∗ is a parameter not necessarily equal to σm.m 
The σ∗ parameter can be found for the case of uniaxial tension by considering the transverse m 
contractions λy = λz: 

λ2 = 
3
(σy − σ ∗ )y mE

Since for rubber λxλyλz = 1,  λ2  = 1/λx. Making this substitution and solving for σ∗ :y m

−Eλ2 −E 
σ ∗ y
= = m 3 3λx 

Substituting this back into Eqn. 10, 

λ2 x =
3 

σx − 
E 

E 3λx 

Solving for σx, 

σx = 
E

λx 
2 − 

1 
3 λx 

Here the stress σx = F/A  is the “true” stress based on the actual (contracted) cross-sectional 
area. The “engineering” stress σe = F/A0  based on the original area A0 = Aλx is: 

σx 1 
σe = = G λx − 

λx λx 
2 

where G = E/2(1 + ν) =  E/3 for  ν  = 1/2. This result is the same as that obtained in Module 
2 by considering the force arising from the reduced entropy as molecular segments spanning 
crosslink sites are extended. It appears here from a simple hypothesis of stress-strain response, 
using a suitable measure of finite strain. 

Anisotropic materials 

Figure 3: An orthotropic material. 

If the material has a texture like wood or unidirectionally-reinforced fiber composites as 
shown in Fig. 3, the modulus E1 in the fiber direction will typically be larger than those in the 
transverse directions (E2 and E3). When E1 .E3, the material is said to be orthotropic=�E2=�
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It is common, however, for the properties in the plane transverse to the fiber direction to be 
isotropic to a good approximation (E2 = E3); such a material is called transversely isotropic. 
The elastic constitutive laws must be modified to account for this anisotropy, and the following 
form is an extension of Eqn. 3 for transversely isotropic materials: 

⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎪ ⎨ �1 ⎪ ⎬ 1/E1 −ν21/E2 0 ⎪ ⎨ σ1 ⎪ ⎬ 
�2 = ⎢ ⎣ −ν12/E1 1/E2 0 ⎥ ⎦ σ2 (11) ⎪ ⎪ ⎪ ⎪ ⎩ γ12 
⎭ 0 0 1/G12 

⎩ τ12 
⎭ 

The parameter ν12 is the principal Poisson’s ratio; it is the ratio of the strain induced in the 
2-direction by a strain applied in the 1-direction. This parameter is not limited to values less 
than 0.5 as in isotropic materials. Conversely, ν21 gives the strain induced in the 1-direction by 
a strain applied in the 2-direction. Since the 2-direction (transverse to the fibers) usually has 
much less stiffness than the 1-direction, it should be clear that a given strain in the 1-direction 
will usually develop a much larger strain in the 2-direction than will the same strain in the 
2-direction induce a strain in the 1-direction. Hence we will usually have ν12 > ν21. There  are  
five constants in the above equation (E1, E2, ν12, ν21 and G12). However, only four of them are 
independent; since the S matrix is symmetric, ν21/E2 = ν12/E1. 
A table of elastic constants and other properties for widely used anisotropic materials can 

be found in the Module on Composite Ply Properties. 
The simple form of Eqn. 11, with zeroes in the terms representing coupling between normal 

and shearing components, is obtained only when the axes are aligned along the principal material 
directions; i.e. along and transverse to the fiber axes. If the axes are oriented along some other 
direction, all terms of the compliance matrix will be populated, and the symmetry of the material 
will not be evident. If for instance the fiber direction is off-axis from the loading direction, the 
material will develop shear strain as the fibers try to orient along the loading direction as shown 
in Fig. 4. There will therefore be a coupling between a normal stress and a shearing strain, 
which never occurs in an isotropic material. 

Figure 4: Shear-normal coupling. 

The transformation law for compliance can be developed from the transformation laws for 
strains and stresses, using the procedures described in Module 10 (Transformations). By suc
cessive transformations, the pseudovector form for strain in an arbitrary x-y direction shown in 
Fig. 5 is related to strain in the 1-2 (principal material) directions, then to the stresses in the 1-2 
directions, and finally to the stresses in the x-y directions. The final grouping of transformation 
matrices relating the x-y strains to the x-y stresses is then the transformed compliance matrix 
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Figure 5: Axis transformation for constitutive equations. 

in the x-y direction: 
⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ �x ⎬ ⎨ �x ⎬ ⎨ �1 ⎬ ⎨ �1 ⎬ 

�y = R �y = RA−1 �2 = RA−1R−1 �2 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ 1 ⎭ ⎩ 1 ⎭ ⎩ ⎭γxy 2 γxy 2 γ12 γ12 ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ σ1 ⎬ ⎨ σx ⎬ ⎨ σx ⎬ 
= RA−1R−1S σ2 = RA−1R−1SA σy ≡ S σy ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭τ12 τxy τxy 

where S is the transformed compliance matrix relative to x-y axes. Here A is the transformation 
matrix, and R is the Reuter’s matrix defined in the Module on Tensor Transformations. The 
inverse of S is D, the stiffness matrix relative to x-y axes: 

S = RA−1R−1SA, D = S 
−1 

(12) 

Example 3 

Consider a ply of Kevlar-epoxy composite with a stiffnesses E1 = 82, E2 = 4,  G12 = 2.8 (all  GPa) and  
ν12 = 0.25. The compliance matrix S in the 1-2 (material) direction is: 

⎡ 
1/E1 −ν21/E2 0 

⎤ ⎡ 
.1220 × 10−10 −.3050 × 10−11 0 

⎤ 

S = ⎣ −ν12/E1 1/E2 0 ⎦ = ⎣ −.3050 × 10−11 .2500 × 10−9 0 ⎦ 

0 0 1/G12 0 0 .3571 × 10−9 

If the ply is oriented with the fiber direction (the “1” direction) at θ = 30◦  from the x-y axes, the 
appropriate transformation matrix is 

⎡ ⎤ ⎡ ⎤ 
c2 s2 2sc .7500 .2500 .8660 

A = ⎣ s2 c2 −2sc ⎦ = ⎣ .2500 .7500 −.8660 ⎦ 

−sc sc c2 − s2 −.4330 .4330 .5000 

The compliance matrix relative to the x-y axes is then 
⎡ ⎤ 

.8830 × 10−10 −.1970 × 10−10 −.1222 × 10−9 

S = RA−1R−1SA = −.1971 × 10−10 .2072 × 10−9 −.8371 × 10−10 ⎣ ⎦ 

−.1222 × 10−9 −.8369 × 10−10 −.2905 × 10−9 

Note that this matrix is symmetric (to within numerical roundoff error), but that nonzero coupling 
values exist. A user not aware of the internal composition of the material would consider it completely 
anisotropic. 
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� = = 

The apparent engineering constants that would be observed if the ply were tested in the x-y rather 
than 1-2 directions can be found directly from the trasnformed S matrix. For instance, the apparent 
elastic modulus in the x direction is Ex = 1/S1,1  = 1/(.8830 × 10−10) =  11.33 GPa. 

Problems 

1. Expand the indicial forms of the governing equations for solid elasticity in three dimensions: 

equilibrium : σij,j = 0  

kinematic : �ij = (ui,j + uj,i)/2 

1 +  ν ν 
constitutive : �ij = σij − δij σkk + αδij ΔT 

E E 
where α is the coefficient of linear thermal expansion and ΔT is a temperature change. 

2. (a) Write	 out the compliance matrix S of Eqn. 3 for polycarbonate using data in the 
Module on Material Properties. 

(b) Use matrix inversion to obtain the stiffness matrix D. 

(c) Use matrix multiplication to obtain the stresses needed to induce the strains 

⎧ ⎫ ⎧ ⎫ 
�x 0.02⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 0.0 ⎪ ⎪ �y ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎨ ⎬�z 0.03 

� = = 
0.01⎪ γyz ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ γxz ⎪ ⎪ 0.025 ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ 

γxy 0.0 

3. (a) Write out the compliance matrix	S of Eqn.3 for an aluminum alloy using data in the 
Module on Material Properties. 

(b) Use matrix inversion to obtan the stiffness matrix D. 

(c) Use matrix multiplication to obtain the stresses needed to induce the strains 

⎧ ⎫ ⎧ ⎫ ⎪ �x ⎪ ⎪ 0.01 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪	 �y ⎪ ⎪ 0.02 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎬ ⎨ ⎬�z 0.0 
⎪	 γyz ⎪ ⎪ 0.0 ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ 0.15 ⎪ ⎪	 γxz ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎭ ⎩ ⎭ 
γxy 0.0 

4.	 Given the stress tensor 

⎡ ⎤  
1 2 3  ⎢ ⎥

σij = ⎣	 2 4 5  ⎦  (MPa) 
3 5 7  

(a) Dissociate σij into deviatoric and dilatational parts Σij and (1/3)σkkδij . 
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(b) Given G = 357 MPa and K = 1.67 GPa, obtain the deviatoric and dilatational strain 
tensors eij and (1/3)�kkδij . 

(c) Add the deviatoric and dilatational strain components obtained above to obtain the 
total strain tensor �ij. 

(d) Compute the strain tensor �ij using the alternate form of the elastic constitutive law 
for isotropic elastic solids: 

1 +  ν ν 
�ij = σij − δij σkk

E E 

Compare the result with that obtained in (c). 

5. Provide an argument that any stress matrix having a zero trace can be transformed to one 
having only zeroes on its diagonal; i.e. the deviatoric stress tensor Σij represents a state 
of pure shear. 

6. Write out the x-y two-dimensional compliance matrix S and stiffness matrix D (Eqn. 12) 
for a single ply of graphite/epoxy composite with its fibers aligned along the x axes. 

7. Write out the x-y two-dimensional compliance matrix S and stiffness matrix D (Eqn. 12) 
for a single ply of graphite/epoxy composite with its fibers aligned 30◦from the x axis. 
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