Prob. 6.8

Assuming the material in a spherical rubber balloon can be modeled as linearly elastic with modulus E and Poisson's ratio $v=0.5$, show that the internal pressure p needed to expand the balloon varies with the radial expansion ratio λ $=r / r_{\theta}$ as

$$
\frac{p r_{0}}{4 E b_{0}}=\frac{1}{\lambda_{r}^{2}}-\frac{1}{\lambda_{r}^{3}}
$$

where $b_{\text {e }}$ is the initial wall thickness. Plot this function and determine its critical values.

The true stress as given by Eq. 6.1 is

$$
\sigma_{\theta}=\sigma_{\phi} \equiv \sigma=\frac{p r}{2 b}
$$

Since the material is incompressible, the current wall thickness b is related to the original thickness b_{o} as

$$
4 \pi r^{2} \cdot b=4 \pi r_{0}^{2} \cdot b_{0} \Rightarrow b=b_{0}\left(\frac{r_{0}}{r}\right)^{2}=\frac{b_{0}}{\lambda_{r}^{2}}
$$

The stress is then

$$
\begin{equation*}
\sigma=\frac{p}{2} \frac{r}{b_{0}} \lambda_{r}^{2}=\frac{p}{2} \frac{r_{o}}{b_{0}} \lambda_{r}^{3} \tag{1}
\end{equation*}
$$

The strain is

$$
\begin{equation*}
\varepsilon_{\theta}=\varepsilon_{\phi} \equiv \varepsilon=\frac{2 \pi r-2 \pi r_{0}}{2 \pi r_{0}}=\frac{r}{r_{0}}-1 \equiv \lambda_{r}-1 \tag{2}
\end{equation*}
$$

If the material is linearly elastic, the strain and stress are related as

$$
\begin{equation*}
\varepsilon_{\phi}=\frac{1}{E}\left[\sigma_{\phi}-v\left(\sigma_{\theta}+\sigma_{r}\right)\right]=\frac{\sigma}{E}(1-0.5)=\frac{\sigma}{2 E} \tag{3}
\end{equation*}
$$

Using (1) and (2) in (3):

$$
\begin{gathered}
\lambda_{r}-1=\frac{1}{2 E} \frac{p}{2} \frac{r_{o}}{b_{0}} \lambda_{r}^{3} \Rightarrow \frac{p r_{o}}{4 E b_{0}}=\frac{\lambda_{r}-1}{\lambda_{r}^{3}} \\
\frac{p r_{o}}{4 E b_{0}}=\frac{1}{\lambda_{r}^{2}}-\frac{1}{\lambda_{r}^{3}}
\end{gathered}
$$

Plot:
pstar:=1/lambda[r]^2-1/lambda[r]^3;

$$
\text { pstar }:=\frac{1}{\lambda_{r}^{2}}-\frac{1}{\lambda_{r}^{3}}
$$

plot(pstar,lambda[r]=1..5);

Determine λ_{r} at maximum pressure:
'lambda[r,max]'=solve(diff(pstar,lambda[r])=0,lambda[r]);

$$
\lambda_{r, \max }=\frac{3}{2}
$$

The maximum normalized pressure is
Digits:=4;'pstar[max]'=evalf(subs(lambda[r]=3/2,pstar));

$$
\text { pstar }_{\max }=.1481
$$

This maximum is commonly experienced as a yield-like phenomenon in blowing up a balloon. However, its origin is geometrical and not a function of the material.

Prob. 6.9

Repeat the previous problem, but using the given constitutive relation for rubber:

$$
{ }_{t} \sigma_{x}=\frac{E}{3}\left(\lambda_{x}^{2}-\frac{1}{\lambda_{x}^{2} \lambda_{y}^{2}}\right)
$$

The circumfrential extension ratio is:

$$
\lambda_{\theta}=\lambda_{\phi}=\frac{2 \pi r}{2 \pi r_{0}}=\lambda_{r}
$$

This is also both λ_{x} and λ_{y} in the given relation. From Eq. (1) of the previous solution we can write

$$
\begin{gathered}
\sigma=\frac{p}{2} \frac{r_{o}}{b_{0}} \lambda_{r}^{3}=\frac{E}{3}\left(\lambda_{r}^{2}-\frac{1}{\lambda_{r}^{4}}\right) \\
\frac{p r_{o}}{4 b_{0} E}=\frac{1}{6}\left(\frac{1}{\lambda_{r}}-\frac{1}{\lambda_{r}^{7}}\right)
\end{gathered}
$$

Plotting this along with the prevous result: pstar1:= 1/lambda[r]^2-1/lambda[r]^3; pstar2:= (1/6)*(1/lambda[r] - 1/lambda[r]^7); plot(\{pstar1,pstar2\},lambda[r]=1..5);

Extension at maximum pressure:
Digits:=4;'lambda[r,max]'=fsolve(diff(pstar2,lambda[r])=0,lambda[r]);

$$
\lambda_{r, \max }=-1.383
$$

The maximum normalized pressure:
'pstar[max]'=evalf(subs(lambda[r]=1.383,pstar2));

$$
\text { pstar }_{\max }=.1033
$$

