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Introduction 

During most of its historical development, the science of Mechanics of Materials relied principally 
on closed-form (not computational) mathematical theorists. Much of their work represents 
mathematical intuition and skill of a very high order, challenging even for advanced researchers 
of today. This theory is taught primarily in graduate subjects, but is outlined here both to 
provide some background that will be useful in the Module on Fracture and as a preliminary 
introduction to these more advanced subjects. 

Governing equations 

We have earlier shown (see Module 9) how the spatial gradients of the six Cauchy stresses are 
related by three equilibrium equations that can be written in pseudovector form as 

LTσ = 0 (1) 

These are augmented by six constitutive equations which can be written for linear elastic mate
rials as (see Module 11) 

σ = D� (2) 

and six kinematic or strain-displacement equations (Module 8) 

� = Lu (3) 

These fifteen equations must be satisfied by the fifteen independent functions (three displace
ments u, six strains �, and six stresses σ). These functions must also satisfy boundary conditions 
on displacement 

u = û on Γu (4) 

where Γu is the portion of the boundary on which the displacements u = û are prescribed. The 
remainder of the boundary must then have prescribed tractions T = T̂ , on which the stresses 
must satisfy Cauchy’s relation: 

σn̂ = T̂ on ΓT (5) 
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In the familiar cantilevered beam shown in Fig. 1, the region of the beam at the wall constitutes 
Γu, having specified (zero) displacement and slope. All other points on the beam boundary 
make up ΓT , with a load of P at the loading point A and a specified load of zero elsewhere. 

Figure 1: Cantilevered beam. 

With structures such as the beam that have simple geometries, solutions can be obtained 
by the direct method we have used in earlier modules: an expression for the displacements is 
written, from which the strains and stresses can be obtained, and the stresses then balanced 
against the externally applied loads. (Problem 2 provides another example of this process.) In 
situations not having this geometrical simplicity, the analyst must carry out a mathematical 
solution, seeking functions of stress, strain and displacement that satisfy both the governing 
equations and the boundary conditions. 
Currently, practical problems are likely to be solved by computational approximation, but it 

is almost always preferable to obtain a closed-form solution if at all possible. The mathematical 
result will show the functional importance of the various parameters, such as loading condi
tions or material properties, in a way a numerical solution cannot, and is therefore more useful 
in guiding design decisions. For this reason, the designer should always begin an analysis of 
load-bearing structures by searching for closed-form solutions of the given, or similar, problem. 
Several compendia of such solutions are available, the book by Roark1 being a useful example. 
However, there is always a danger in performing this sort of “handbook engineering” blindly, 

and this section is intended partly to illustrate the mathematical concepts that underlie many 
of these published solutions. It is probably true that most of the problems that can be solved 
mathematically have already been completed; these are the classical problems of applied me
chanics, and they often require a rather high level of mathematical sophistication. The classic 
text by Timoshenko and Goodier2 is an excellent source for further reading in this area. 

The Airy stress function 

Expanding the kinematic or strain-displacement equations (Eqn. 3) in two dimensions gives the 
familiar forms: 

∂u 
�x = 

∂x 
∂v 

�y = 
∂y 

(6) 

∂v ∂u 
γxy = 

∂x 
+ 
∂y 

1W.C. Young, Roark’s Formulas for Stress and Strain, McGraw-Hill, New York, 1989. 
2S. Timoshenko and J.N. Goodier, Theory of Elasticity, McGraw-Hill, New York, 1951. 
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Since three strains (�x, �y, γxy) are written in terms of only two displacements (u, v), they cannot 
be specified arbitrarily; a relation must exist between the three strains. If �x is differentiated 
twice by dx, �y twice by dy, and  γxy by dx and then dy we have directly 

∂2�x 

∂y2 + 
∂2�y 

∂x2 = 
∂2γxy 
∂x ∂y 

(7) 

In order for the displacements to be so differentiable, they must be continuous functions, which 
means physically that the body must deform in a compatible manner, i.e. without developing 
cracks or overlaps. For this reason Eqn. 7 is called the compatibility equation for strains, since 
the continuity of the body is guaranteed if the strains satisfy it. 
The compatibility equation can be written in terms of the stresses rather than the strains 

by recalling the constitutive equations for elastic plane stress: 

1 
�x = (σx − νσy)

E 
1 

�y = (σy − νσx)  (8)  
E

1 2(1 + ν)
γxy = τxy = τxy

G E 
Substituting these in Eqn. 7 gives 

∂2 ∂2 ∂2τxy 
∂y2 (σx − νσy) +  

∂x2 (σy − νσx) =  2(1 +  ν)
∂x ∂y 

(9) 

Stresses satisfying this relation guarantee compatibility of strain. 
The stresses must also satisfy the equilibrium equations, which in two dimensions can be 

written 

∂σx ∂τxy
+ = 0  

∂x ∂y 

∂τxy ∂σy
+ = 0 (10)

∂x ∂y 

As a means of simplifying the search for functions whose derivatives obey these rules, G.B. Airy 
(1801–1892) defined a stress function φ from which the stresses could be obtained by differenti
ation: 

∂2φ 
σx = 

∂y2 

∂2φ 
σy = 

∂x2 (11) 

∂2φ 
τxy = − 

∂x ∂y 

Direct substitution will show that stresses obtained from this procedure will automatically satisfy 
the equilibrium equations. This maneuver is essentially limited to two-dimensional problems, 
but with that proviso it provides a great simplification in searching for valid functions for the 
stresses. 
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� � 

Now substituting these into Eqn. 9, we have 

∂4φ ∂4φ ∂4φ 
+ 2  + ≡ �2(�2φ)  ≡ �4φ  = 0 (12)

∂x4 ∂x2∂y2 ∂y4 

Any function φ(x, y) that satisfies this relation will satisfy the governing relations for equilibrium, 
geometric compatibility, and linear elasticity. Of course, many functions could be written that 
satisfy the compatibility equation; for instance setting φ = 0 would always work. But to 
make the solution correct for a particular stress analysis, the boundary conditions on stress and 
displacement must be satisfied as well. This is usually a much more difficult undertaking, and 
no general solution that works for all cases exists. It can be shown, however, that a solution 
satisfying both the compatibility equation and the boundary conditions is unique; i.e. that it is 
the only correct solution. 

Stresses around a circular hole 

Figure 2: Circular hole in a uniaxially stressed plate 

To illustrate the use of the Airy function approach, we will outline the important work of 
Kirsch3, who obtained a solution for the influence on the stresses of a hole placed in the material. 
This is vitally important in analyzing such problems as rivet holes used in joining, and the effect 
of a manufacturing void in initiating failure. Consider a thin sheet as illustrated in Fig. 2, infinite 
in lateral dimensions but containing a circular hole of radius a, and subjected to a uniaxial stress 
σ. Using circular r, θ coordinates centered on the hole, the compatibility equation for φ is 

∂2 1 ∂ 1 ∂2 ∂2φ 1 ∂φ 1 ∂2φ 
�4φ = + + 

2 + + 
2 = 0 (13)

∂r2 r ∂r r ∂θ2 ∂r2 r ∂r r ∂θ2 

In these circular coordinates, the stresses are obtained from φ as 

1 ∂φ 1 ∂2φ 
σr = + 

2r ∂r r ∂θ2 

∂2φ 
σθ = (14)

∂r2 

∂ 1 ∂φ 
τrθ = − 

∂r r ∂θ 

G. Kirsch, VDI, vol. 42, 1898; described in Timoshenko & Goodier, op. cit.. 
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We now seek a function φ(r, θ) that satisfies Eqn. 13 and also the boundary conditions of the 
problem. On the periphery of the hole the radial and shearing stresses must vanish, since no 
external tractions exist there: 

σr = τrθ = 0, r  =  a  (15) 

Far from the hole, the stresses must become the far-field value σ; the Mohr procedure gives the 
radial and tangential stress components in circular coordinates as ⎫ 

= (1 + cos 2θ) ⎪ 

σθ = σ 
2 (1 − cos 2θ) r →∞  (16) 

σr
σ 
2 ⎬ 

⎪ 
τrθ = σ 

2 sin 2θ 
⎭ 

Since the normal stresses vary circumferentially as cos 2θ (removing temporarily the σ/2 factor) 
and the shear stresses vary as sin 2θ, an acceptable stress function could be of the form 

φ = f(r) cos 2θ  (17) 

When this is substituted into Eqn. 13, an ordinary differential equation in f(r) is obtained: 

d2 1 d 4 d2f 1 df 4f 
+ − + − = 0  

dr2 r dr r2 dr2 r dr r2 

This has the general solution 

f(r) =  Ar2 + Br4 + C 
1 
2 + D (18) 
r

The stress function obtained from Eqns. 17 and 18 is now used to write expressions for the 
stresses according to Eqn. 14, and the constants determined using the boundary conditions in 
Eqns. 15 and 16; this gives 

σ a4σ a2σ 
A = − , B  = 0, C  =  −  , D  =  

4 4 2 

Substituting these values into the expressions for stress and replacing the σ/2 that was tem
porarily removed, the final expressions for the stresses are 

σ 
� 

a2 
� 

σ 
� 

3a4 4a2 
� 

σr = 
2 
1 − 

r2 
+ 
2 
1 +  

r4  −  
r2  cos 2θ � � � � 

σ a2 σ 3a4 
σθ = 

2 
1 +  

r2  −  
2  
1 +  

r4  cos 2θ (19) 

� � 
σ 3a4 2a2 

τrθ = − 
2 
1 − 

r4 + 
r2 sin 2θ 

As seen in the plot of Fig. 3, the stress reaches a maximum value of (σθ)max = 3σ  at the periphery 
of the hole (r = a), at a diametral position transverse to the loading direction (θ = π/2). The 
stress concentration factor, or SCF, for this problem is therefore 3. The x-direction stress falls 
to zero at the position θ = π/2, r = a, as it must to satisfy the stress-free boundary condition 
at the periphery of the hole. 

5 



Figure 3: Stresses near circular hole. (a) Contours of σy (far-field stress applied in y-direction). 
(b) Variation of σy and σx along θ = π/2 line. 

Note that in the case of a circular hole the SCF does not depend on the size of the hole: 
any hole, no matter how small, increases the local stresses near the hole by a factor of three. 
This is a very serious consideration in the design of structures that must be drilled and riveted 
in assembly. This is the case in construction of most jetliner fuselages, the skin of which must 
withstand substantial stresses as the differential cabin pressure is cycled by approximately 10 
psig during each flight. The high-stress region near the rivet holes has a dangerous propensity 
to incubate fatigue cracks, and several catastrophic aircraft failures have been traced to exactly 
this cause. 
Note also that the stress concentration effect is confined to the region quite close to the hole, 

with the stresses falling to their far-field values within three or so hole diameters. This is a 
manifestation of St. Venant’s principle4, which is a common-sense statement that the influence 
of a perturbation in the stress field is largely confined to the region of the disturbance. This 
principle is extremely useful in engineering approximations, but of course the stress concentration 
near the disturbance itself must be kept in mind. 
When at the beginning of this section we took the size of the plate to be “infinite in lateral 

extent,” we really meant that the stress conditions at the plate edges were far enough away from 
the hole that they did not influence the stress state near the hole. With the Kirsch solution now 
in hand, we can be more realistic about this: the plate must be three or so times larger than 
the hole, or the Kirsch solution will be unreliable. 

Complex functions 

In many problems of practical interest, it is convenient to use stress functions as complex func
tions of two variables. We will see that these have the ability to satisfy the governing equations 
automatically, leaving only adjustments needed to match the boundary conditions. For this 
reason, complex-variable methods play an important role in theoretical stress analysis, and even 
in this introductory treatment we wish to illustrate the power of the method. To outline a few 
necessary relations, consider z to be a complex number in Cartesian coordinates x and y or 
polar coordinates r and θ as 

z = x + iy = re iθ (20) 

The French scientist Barré de Saint-Venant (1797–1886) is one of the great pioneers in mechanics of materials. 
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√ 
where i = −1. An analytic function f(z) is one whose derivatives depend on z only, and takes 
the form 

f(z) =  α  +  iβ (21) 

where α and β are real functions of x and y. It is easily shown that α and β satisfy the 
Cauchy-Riemann equations: 

∂α ∂β ∂α ∂β 
= = − (22)

∂x ∂y ∂y ∂x 

If the first of these is differentiated with respect to x and the second with respect to y, and  the  
results added, we obtain 

∂2α ∂2α 
+ ≡ �2α  = 0 (23)

∂x2 ∂y2 

This is Laplace’s equation, and any function that satisfies this equation is termed a harmonic 
function. Equivalently, α could have been eliminated in favor of β to give �2β = 0,  so  both  the  
real and imaginary parts of any complex function provide solutions to Laplace’s equation. Now 
consider a function of the form xψ, where  ψ  is harmonic; it can be shown by direct differentiation 
that 

�4(xψ) = 0 (24) 

i.e. any function of the form xψ, where  ψ  is harmonic, satisfies Eqn. 12, and many thus be used 
as a stress function. Similarly, it can be shown that yψ and (x2 +y2)ψ = r2ψ are also suitable, as 
is ψ itself. In general, a suitable stress function can be obtained from any two analytic functions 
ψ and χ according to 

φ = Re  [(x  − iy)ψ(z) +  χ(z)] (25) 

where “Re” indicates the real part of the complex expression. The stresses corresponding to this 
function φ are obtained as 

σx + σy = 4Re  ψ�(z)  
σy  − σx  + 2  iτxy = 2 [zψ��(z) +  χ��(z)] 

(26) 

where the primes indicate differentiation with respect to z and the overbar indicates the conjugate 
function obtained by replacing i with −i; hence z = x − iy. 

Stresses around an elliptical hole 

In a development very important to the theory of fracture, Inglis5 used complex potential func
tions to extend Kirsch’s work to treat the stress field around a plate containing an elliptical 
rather than circular hole. This permits crack-like geometries to be treated by making the minor 
axis of the ellipse small. It is convenient to work in elliptical α, β coordinates, as shown in Fig. 4, 
defined as 

x = c cosh α cos β, y = c sinh α sin β (27) 

C.E. Inglis, “Stresses in a Plate Due to the Presence of Cracks and Sharp Corners,” Transactions of the 
Institution of Naval Architects, Vol. 55, London, 1913, pp. 219–230. 
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Figure 4: Elliptical coordinates. 

where c is a constant. If β is eliminated this is seen in turn to be equivalent to 

2 2x y 2 

cosh2 α 
+ 
sinh2 α 

= c (28) 

On the boundary of the ellipse α = α0, so we can write 

c cosh α0 = a, c sinh α0 = b (29) 

where a and b are constants. On the boundary, then 

2 2x y
+ = 1 (30) 

a2 b2 

which is recognized as the Cartesian equation of an ellipse, with a and b being the major and 
minor radii . The elliptical coordinates can be written in terms of complex variables as 

z = c cosh ζ,  ζ  =  α  +  iβ (31) 

As the boundary of the ellipse is traversed, α remains constant at α0 while β varies from 0 to 2π. 
Hence the stresses must be periodic in β with period 2π, while becoming equal to the far-field 
uniaxial stress σy = σ, σx = τxy = 0 far from the ellipse; Eqn. 26 then gives 

4Re  ψ�(z) =  σ
ζ →∞  (32)

2[zψ��(z) +  χ��(z)] = σ 

These boundary conditions can be satisfied by potential functions in the forms 

4ψ(z) =  Ac cosh ζ + Bc sinh ζ 
4χ(z) =  Cc2ζ  +  Dc2 cosh 2ζ + Ec2 sinh 2ζ 

where A,B,C,D,E are constants to be determined from the boundary conditions. When this 
is done the complex potentials are given as 

4ψ(z) =  σc[(1 + e 2α0 ) sinh  ζ  − e  2α0  cosh ζ] 
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� � 

� � 

� � � 

4χ(z) =  −σc2 (cosh 2α0 − cosh π)ζ +
1 
e 2α0 − cosh 2 ζ − α0 − i

π 
2 2 

The stresses σx, σy, and  τxy can be obtained by using these in Eqns. 26. However, the amount 
of labor in carrying out these substitutions isn’t to be sneezed at, and before computers were 
generally available the Inglis solution was of somewhat limited use in probing the nature of the 
stress field near crack tips. 

Figure 5: Stress field in the vicinity of an elliptical hole, with uniaxial stress applied in y-
direction. (a) Contours of σy, (b) Contours of σx. 

Figure 5 shows stress contours computed by Cook and Gordon6 from the Inglis equations. 
A strong stress concentration of the stress σy is noted at the periphery of the hole, as would 
be expected. The horizontal stress σx goes to zero at this same position, as it must to sat
isfy the boundary conditions there. Note however that σx exhibits a mild stress concentration 
(one fifth of that for σy, it turns out) a little distance away from the hole. If the material has 
planes of weakness along the y direction, for instance as between the fibrils in wood or many 
other biological structures, the stress σx could cause a split to open up in the y direction just 
ahead of the main crack. This would act to blunt and arrest the crack, and thus impart a mea
sure of toughness to the material. This effect is sometimes called the Cook-Gordon toughening 
mechanism. 
The mathematics of the Inglis solution are simpler at the surface of the elliptical hole, since 

here the normal component σα must vanish. The tangential stress component can then be 
computed directly: 

(σβ )α=α0 = σe2α0 
sinh 2α0(1 + e−2α0 ) 

− 1 
cosh 2α0 − cos 2β 

The greatest stress occurs at the end of the major axis (cos 2β = 1):  

a 
(σβ )β=0,π = σy = σ 1 + 2  (33)

b 
This can also be written in terms of the radius of curvature ρ at the tip of the major axis as 

a 
σy = σ 1 +  2  (34)

ρ 

J.E. Gordon, The Science of Structures and Materials, Scientific American Library, New York, 1988. 
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This result is immediately useful: it is clear that large cracks are worse than small ones (the 
local stress increases with crack size a), and it is also obvious that sharp voids (decreasing ρ) 
are worse than rounded ones. Note also that the stress σy increases without limit as the crack 
becomes sharper (ρ → 0), so the concept of a stress concentration factor becomes difficult to 
use for very sharp cracks. When the major and minor axes of the ellipse are the same (b = a), 
the result becomes identical to that of the circular hole outlined earlier. 

Stresses near a sharp crack 

Figure 6: Sharp crack in an infinite sheet. 

The Inglis solution is difficult to apply, especially as the crack becomes sharp. A more 
tractable and now more widely used approach was developed by Westergaard7, which treats a 
sharp crack of length 2a in a thin but infinitely wide sheet (see Fig. 6). The stresses that act 
perpendicularly to the crack free surfaces (the crack “flanks”) must be zero, while at distances 
far from the crack they must approach the far-field imposed stresses. Consider a harmonic 
function φ(z), with first and second derivatives φ�(z) and  φ��(z), and first and second integrals 

φ(z) and  φ(z). Westergaard constructed a stress function as 

Φ =  Re  φ(z) +  y Im φ(z) (35) 

It can be shown directly that the stresses derived from this function satisfy the equilibrium, 
compatibility, and constitutive relations. The function φ(z) needed here is a harmonic function 
such that the stresses approach the far-field value of σ at infinity, but are zero at the crack flanks 
except at the crack tip where the stress becomes unbounded: 

σ, x→ ±∞0,  −a < x < +a, y = 0  
σy = 

∞, x =  ±∞ 

These conditions are satisfied by complex functions of the form 

σ 
φ(z) =  �  (36)

1 − a2/z2 

Westergaard, H.M., “Bearing Pressures and Cracks,” Transactions, Am. Soc. Mech. Engrs., Journal of Applied 
Mechanics, Vol. 5, p. 49, 1939. 
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This gives the needed singularity for z = ±a, and the other boundary conditions can be verified 
directly as well. The stresses are now found by suitable differentiations of the stress function; 
for instance 

∂2Φ 
σy = = Re  φ(z) +  y  Im φ�(z)

∂x2 

In terms of the distance r from the crack tip, this becomes 

a θ θ 3θ 
σy = σ · cos 1 + sin  sin + · · · 	 (37)

2r 2 2 2 

where these are the initial terms of a series approximation. Near the crack tip, when r � a, we  
can write 

a K 
(σy)y=0 = σ ≡ √	 (38)

2r 2πr 
√	 √ 

where K = σ πa is the stress intensity factor, with units of Nm−3/2 or psi in. (The factor π 
seems redundant here since it appears to the same power in both the numerator and denominator, 
but it is usually included as written here for agreement with the older literature.) We will see 
in the Module on Fracture that the stress intensity factor is a commonly used measure of the 
driving force for crack propagation, and thus underlies much of modern fracture mechanics. The √ 
dependency of the stress on distance from the crack is singular, with a 1/ r dependency. The 
K factor scales the intensity of the overall stress distribution, with the stress always becoming 
unbounded as the crack tip is approached. 

Problems 

1. Expand the governing equations (Eqns. 1—3) in two Cartesian dimensions.	 Identify the 
unknown functions. How many equations and unknowns are there? 

2. Consider a thick-walled pressure vessel of inner radius	 ri and outer radius ro, subjected 
to an internal pressure pi and an external pressure po. Assume a trial solution for the 
radial displacement of the form u(r) =  Ar + B/r; this relation can be shown to satisfy 
the governing equations for equilibrium, strain-displacement, and stress-strain governing 
equations. 

(a) Evaluate the constants A and B using the boundary conditions 

σr = −pi @ r = ri, σr  =  −po  @  r  =  ro  

(b) Then show that 

pi 
� 
(ro/r)

2 − 1 
� 
+ po[(ro/ri)2 − (ro/r)2]

σr(r) =  −
(ro/ri)2 − 1 

3.	 Justify the boundary conditions given in Eqns. 14 for stress in circular coordinates (σr, σθ, τxy 
appropriate to a uniaxially loaded plate containing a circular hole. 

4.	 Show that the Airy function φ(x, y) defined by Eqns. 11 satisfies the equilibrium equations. 

11




Prob. 2 

5.	 Show that stress functions in the form of quadratic or cubic polynomials (φ = a2x2 + 
b2xy + c2y2 and φ = a3x3 + b3x2y + c3xy2 + d3y3) automatically satisfy the governing 
relation �4φ = 0.  

6.	Write the stresses σx, σy, τxy corresponding to the quadratic and cubic stress functions of 
the previous problem. 

7. Choose the constants in the quadratic stress function of the previous two problems so as 
to represent (a) simple tension, (b) biaxial tension, and (c) pure shear of a rectangular 
plate. 

Prob. 7 

8. Choose the constants in the cubic stress function of the previous problems so as to represent 
pure bending induced by couples applied to vertical sides of a rectangular plate. 

Prob. 8 

9. Consider a cantilevered beam of rectangular cross section and width b = 1, loaded at the 
free end (x = 0)  with  a  force  P  . At the free end, the boundary conditions on stress can 
be written σx = σy = 0,  and  

�  h/2 
τxy dy = P 

−h/2 
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The horizontal edges are not loaded, so we also have that τxy = 0  at  y  =  ±h/2. 

(a) Show that these conditions are satisfied by a stress function of the form 

φ = b2xy + d4xy 3


(b) Evaluate the constants to show that the stresses can be written 

σx = 
Pxy  

, σy  = 0, τxy = 
P 

� 
h 
�2 
− y 2


I 2I 2


in agreement with the elementary theory of beam bending (Module 13).


Prob. 9
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