What is computation?
What is a shape grammar?
How are shape grammars used in design?
How is a shape grammar developed?

What is computation?

Algorithm for designing a gothic spire (Roriczer)

If you want to draw a base plan for a pinnacle, according to the masons' technique [derived] out of correct geometry, then begin by making a square as shown hereafter with the letters a $b c d$, so that it is the same distance from a to b as from b to d, d to c, and c to a, as in the figure drawn hereafter.

Then make the square equal in size to the preceding; divide [the distance] from a to b into two equal parts, and mark an e [at the midpoint]. Do the same from b to d and mark an h; from d to c and mark an from c to a and mark a g. Then draw lines from e to h, h to f, f to g, and g to e, as in the example of the figure drawn hereafter.

Then make the above-derived square equal in size to the preceding; divide [the side] from e to h into two equal parts, and mark a k [at the midpoint]. Do the same from h to f and mark an m; from f to g and mark an l; from g to e and mark an i. Then draw lines from e to h, h to f, f to g, and g to e, as in the example of the figure drawn hereafter.

Then make the two squares $a b c d$ and $i k l m$ equal in size to the preceding, and rotate the square $e h g f$, as in the example of the figure drawn hereafter.

-

Then when you eliminate the remaining lines that are not needed for the setting out, there remains such a form as shown below.

Procedure for defining the entasis of a column (Palladio)

Th1 he columns in each order ought to be form'd in fuch a manner, that the diameter of the upper part of the column may be f maller than at the bottom, with a kind of a fwelling n the middle.

As to the manner of making the f welling in the middle, we have no more to f hew from VITRUVIUS but his bare promife; which is the reafon that moft writers differ from one another upon that fubject.

The method I ufe in making the profile of the f wellings is this; I divide the fuft of the column into three parts, and leave the lower part perpendicular; to the fide of the extremity of which I apply the edge of a thin rule, of the fame length, or a little longer than the column, and bend that part which reaches from the third part upwards, until the end touches the point of the diminution of the upper part of the column under the collarino. I then mark as the curve directs, which gives the column a kind of f welling in the middle, and makes it project very gracefully.

And although I never could imagine a more expeditious and fuccefsful method than this, I am neverthelefs confirmed in my opinion, fince Signor PIETRO CATANEO was $f 0$ well pleafed when I told him of it, that he gave it a place in his Treatife of Architecture, with which he has not a little illuftrated this profeffion.

> A B, the third part of the column, which is left directly perpendicular.
> B C, the two thirds that are diminifhed.
> C, the point of diminution under the collarino.

Computation is:

creative

descriptive

Algorithm for designing a gothic spire (Roriczer)

If you want to draw a base plan for a pinnacle, according to the masons' technique [derived] out of correct geometry, then begin by making a square as shown hereafter with the letters a $b c d$, so that it is the same distance from a to b as from b to d, d to c, and c to a, as in the figure drawn hereafter.

Then make the square equal in size to the preceding; divide [the distance] from a to b into two equal parts, and mark an e [at the midpoint]. Do the same from b to d and mark an h; from d to c and mark an from c to a and mark a g. Then draw lines from e to h, h to f, f to g, and g to e, as in the example of the figure drawn hereafter.

Then make the above-derived square equal in size to the preceding; divide [the side] from e to h into two equal parts, and mark a k [at the midpoint]. Do the same from h to f and mark an m; from f to g and mark an l; from g to e and mark an i. Then draw lines from e to h, h to f, f to g, and g to e, as in the example of the figure drawn hereafter.

Then make the two squares $a b c d$ and $i k l m$ equal in size to the preceding, and rotate the square $e h g f$, as in the example of the figure drawn hereafter.

-

Then when you eliminate the remaining lines that are not needed for the setting out, there remains such a form as shown below.

What is a shape grammar?

Shapes

Spatial relation

Illustration by Peter Murray, "the Artchitecture of the Italian Renaissance", Shocken Books Inc. 1963, Pp.96.

SHAPE GRAMMAR

rule

DERIVATION

OTHER DESIGNS IN THE LANGUAGE

How are shape grammars used in design?

Shape grammar applications

analysis

original design

Ice-ray grammar

Mughul garden grammar

original design applications

Apartment building in Manhattan

Cultural history museum in LA

Ocean museum in California

How is a shape grammar developed?

Stages of shape grammar development

shapes
spatial relations

rules

shape grammar
designs
shapes

basic components of grammars and designs

shapes

spatial relation

arrangement of shapes

spatial relations

shape rules

shapes:
A, B
spatial relation: $\mathrm{A}+\mathrm{B}$
rules:
$A \rightarrow A+B$
$B \rightarrow A+B$

spatial relation

rule

labels

symbols that say

 how to apply a rule
rule

labeled rule

applying a labeled rule $A \rightarrow A+B$

match the labeled shape A with a labeled shape in a design

add the labeled shape B to the design

spatial transformations

translation

rotation

reflection

scale

translation

rotation

reflection

scale

combinations of transformations

labeled rule

derivation

a sequence of designs where each design is generated from the previous design by applying a rule
design $1 \Rightarrow$ design $2 \Rightarrow$ design $3 \Rightarrow$ design $4 \Rightarrow \ldots$

labeled rule

derivation

labeled rule

derivation

labeled rule

derivation

labeled rule

derivation

labeled rules

spatial relation

rule

labeled rules

labeled rule

derivation

labeled rule

derivation

spatial relation

rules

labeled rules

example labeling: 8,3

example labeling: 4,4

derivation
 (labeling 8,3)

labeled rules

example labeling: 8,3

example labeling: 4,4

derivation
 (labeling 4,4)

Courtyard houses in Malibu

Cultural history museum in LA

ASSIGNMENT

1. Go back to the example grammars from today's lecture. Try applying labeled rules that you did not do in class.
2. Read the online paper: "Shape grammars in education and practice: history and practice"
