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Model

C = R = wealth level
Lottery = cdf F (pdf f)
Utility function u : R—R
U(F) = Ex(u) = Ju(x)dF(x)
E-(x) = [xdF(x)




Attitudes Towards Risk

DM is
risk averse if Ef(u) < u(EL(x)) (VF)
strictly risk averse if Ef(u) < u(Ex(x)) (VY “risky” F)
risk neutral if E(u) = u(EL(x)) (VF)
risk seeking if E(u) 2 u(EL(x)) (VF)
DM is
risk averse if u is concave
strictly risk averse if u is strictly concave
risk neutral if u is linear
risk seeking if u is convex

Certainty Equivalence

CE(F) = u™(U(F))=u"(EKu))
DM is
o risk averse if CE(F) < Eg(x) for all F;
o risk neutral if CE(F) = E-(x) for all F;
o risk seeking if CE(F) = E.(x) for all F.
Take DM1 and DM2 with v, and u,

DM1 is more risk averse than DM2
o < u, is more concave than u,,

o & uy = @o u, for some concave function ¢,
0 & CE((F) = uy(Ex(uy)) = Uy (ER(U,)) = CEL(F)




Absolute Risk Aversion

absolute risk aversion:
ra(x) = -u"(x)/u'(x)
constant absolute risk aversion (CARA)
u(x) =-e
If x ~ N(u,0%), CE(F) = 4 - a0?%/2
Fact: More risk aversion < higher absolute risk
aversion everywhere

Fact: Decreasing absolute risk aversion (DARA)
& Vy>0, u, with u,(x)=u(x+y) is less risk averse

Relative risk aversion:

relative risk aversion:
re(x) = -xu"(x)/u'(x)
constant relative risk aversion (CRRA)
u(x)=-x"-/(1-p),
When p = 1, u(x) = log(x).
Fact: Decreasing relative risk aversion (DRRA)
< V=1, u, with u,(x)=u(tx) is less risk averse




Application: Insurance

wealth w and a loss of $1 with probability p.
Insurance: pays $1 in case of loss costs g;
DM buys A units of insurance.

Fact: If p = g (fair premium), then 2. = 1 (full
insurance).

m Expected wealth w — p for all i.

Fact: If DM1 buys full insurance, a more risk
averse DM2 also buys full insurance.

a CE,(\) < CE,(A) < CE,(1) = CEL(1).

Application: Optimal Portfolio Choice

With initial wealth w, invest a« € [0,w] in a risky asset
that pays a return z per each $ invested; z has cdf F
on [0,x).

U(a) = I, u(w+az-a) dF(z); concave
It is optimal to invest o > 0 iff E[z] > 1.
m U(0) =," u'(w)(z-1) dF(2) = u'(w)(E[z]-1).

If agent with utility u, optimally invests «,, then an
agent with more risk averse u, (same w) optimally
invests a, < a;.

DARA = optimal « increases in w.
CARA = optimal « is constant in w.
CRRA (DRRA) = optimal o/w is constant (increasing)




Optimal Portfolio Choice — Proof

u,=g(u,); g is concave; g'(u,(w)) = 1.

U(a) = Ju(w+a(z-1))(z-1) dF(2)

U, (@)- Uy (@) = [luy(w+a(z-1))- uy(w+a(z-1)))(z-1)dF(2)
<0.

o g(uy(wrayz-04)) < g'(us(w)) =1 & z>1.

a Uy(wtra(z-1)) < u(wta(z-1)) & z> 1.

ay < 04

Stochastic Dominance

Goal: Compare lotteries with minimal assumptions
on preferences

Assume that the support of all payoff distributions is
bounded. Support = [a,b].

Two main concepts:

o First-order Stochastic Dominance: A payoff distribution
is preferred by all monotonic Expected Utility
preferences.

o Second-order Stochastic Dominance: A payoff
distribution is preferred by all risk averse EU
preferences.




' ESD

= DEF: Ffirst-order stochastically dominates G <
F(x) < G(x) for all x.

= THM: Ffirst-order stochastically dominates G < for every
weakly increasing u: R—R, [u(x)dF(x) > [u(x)dG(x).

Proof:
“If” for F(x) > G(x*), define u = 1,,.,,.

“Only if”: Assume F and G are strictly increasing and
continuous on [a,b].

Define y(x) = F(G(x)); y(x) > x for all x
Ju(y)dF(y) = Ju(y(x))dF(y(x) = lu(y(x)dG(x) > [u(x)dG(x)

‘ MPR and MI.R Stochastic Orders

= DEF: F dominates G in the Monotone Probability
Ratio (MPR) sense if k(x) = G(x)/F(x) is weakly
decreasing in x.

= THM: MPR dominance implies FSD.

= DEF: F dominates G in the Monotone Likelihood
Ratio (MLR) sense if ((x) = G'(x)/F(x) is weakly
decreasing.

= THM: MLR dominance implies MPR dominance.




SSD

Assume: F and G has the same mean

DEF: F second-order stochastically dominates G < for
every non-decreasing concave u, Ju(x)dF(x) > Ju(x)dG(x).

DEF: G is a mean-preserving spread of F < y = x + ¢ for
some x ~ F, y ~ G, and ¢ with E[¢|x] = 0.

THM: The following are equivalent:
o F second-order stochastically dominates G.

o G is a mean-preserving spread of F.
a Vt>0, [,'G(x)dx > [/F(x)dx.

SSD

Example: G (dotted) is a mean-preserving
spread of F (solid).
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