
Chapter 4 

Attitudes Towards Risk 

In the previous lecture, we explored the implications of expected utility maximization. 

In this lecture, considering the lotteries over money, I will introduce the basic notions 

regarding risk, such as risk aversion and certainty equivalence. Understanding these 

concepts is essential to follow most areas in modern economics. 

4.1 Theory 

Take the set of alternatives as X = R which corresponds the wealth level of the decision 

maker. The decision maker has an increasing von Neumann-Morgenstern utility func

tion u : R R, representing his preferences over the lotteries on his wealth level. I will → 

assume that u is differentiable whenever needed. Since we have a continuum of conse

quences, it is more convenient to represent lotteries by cumulative distribution functions 

F : X [0, 1]. I  write  f for the density of F when it exists. The expected utility of F→ 

is given by Z 
U (F ) ≡ EF (u) ≡ u (x) dF (x) , 

where EF is the expectation operator under F . The expected wealth level under F is Z 
EF (x) =  xdF (x) . 

By comparing EF (x) to EF (u), one can learn about the decision maker’s attitudes 

towards risk. 
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A decision maker is called risk averse if he always prefers sure wealth level EF (x) to 

the lottery F , i.e.,  

EF (u) ≤ u (EF (x)) (∀F ) . 

He is called strictly risk averse if the inequality is always strict for nondegenerate lot

teries.  He is called  risk neutral if he is always indifferent: 

EF (u) =  u (EF (x)) (∀F ) . 

Finally, he is called risk seeking (or risk loving) if he prefers lottery to the sure outcome, 

i.e., 

EF (u) ≥ u (EF (x)) (∀F ) . 

Clearly, by Jensen’s inequality, which you must know by now, risk aversion corre

sponds to the concavity of the utility function: 

• DM is risk averse if and only if u is concave; 

• he is strictly risk averse if and only if u is strictly concave; 

• he is risk neutral if and only if u is linear, and 

• he is risk seeking if and only if u is convex. 

Another way to assess the attitudes towards risk is certainty equivalence. The cer

tainty equivalent of a lottery F , denoted by CE (F ), is a sure wealth level that yields 

the same expected utility as F . That  is,  

CE (F ) =  u−1 (U (F )) = u−1 (EF (u)) . 

It is immediate from the definitions that 

• DM is risk averse if and only if CE (F ) ≤ EF (x) for all F ; 

• he is risk neutral if and only if CE (F ) =  EF (x) for all F , and  

• he is risk seeking if and only if CE (F ) ≥ EF (x) for all F . 
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It is sometimes useful to quantify the degree of risk aversion. There are two important 

measures of risk aversion. The first one is absolute risk aversion: 

rA (x) = −u00 (x) /u0 (x) , 

which is also called Arrow-Pratt coefficient of absolute risk aversion. Note that u00 

measures the concavity of the utility function, while u0 normalizes the concavity as the 

utility representation is unique up to affine transformations. 

A convenient assumption in economic analysis is constant absolute risk aversion 

(CARA). A CARA utility function takes the simple form of 

u (x) = −e−αx , 

where α is the coefficient of absolute risk aversion. This utility function becomes espe

cially convenient when the lotteries are distributed normally. In that case, the certainty 

equivalent becomes 
1 

CE (F ) = μ − ασ2 

2 

where μ and σ2 are the mean and the variance of the distribution, respectively. While 

CARA is a convenient assumption, some may find it more plausible that absolute risk 

aversion is decreasing with wealth level (DARA), so that richer people take higher risks. 

Indeed, some may want to normalize the amount of risk aversion with respect to the 

level of wealth. This leads to the concept of relative risk aversion. The  coefficient of 

relative risk aversion is 

rR (x) = −xu00 (x) /u0 (x) . 

The constant relative risk aversion (CRRA) utility function takes the form of 

u (x) = −x 1−ρ/ (1− ρ) , 

where ρ is the coefficient of constant relative risk aversion. When ρ = 1,  it is the  log  

utility function: u (x) = log (x). 

Using the above concepts, one can also compare the attitudes of two decision makers 

towards risk. To this end, take any two decision makers DM1 and DM2 with u1 and u2 

and write CEi (F ) ≡ u−i 
1 (EF (ui)) and rA,i = −ui00/u0i for the certainty equivalent and 

coefficient of absolute risk aversion under ui for i ∈ {1, 2}. 
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Definition 11 DM1 is more risk averse than DM2 if either of the equivalent conditions 

in the next proposition holds. 

Proposition 3 The following  are equivalent.  

1. u1 = g u2 for some concave function g,◦ 

2. CE1 (F ) ≤ CE2 (F ) for every F ; 

3. rA,1 ≥ rA,2 everywhere. 

Proof. Since both u1 and u2 are increasing, there exists an increasing function g such 

that u1 = g u2. To see the equivalence between 1 and 2, note that CE1 (F ) =◦ 
u−1 (g−1 (EF (g (u2)))). By Jensen’s inequality, g is concave if and only if EF (g (u2)) ≤2 

g (EF (u2)) for every F . Thus,  g is concave if and only for every F , 

CE1 (F ) =  u−2
1 
¡
g−1 (EF (g (u2))) 

¢ 
u−2

1 
¡
g−1 (g (EF (u2))) 

¢ 
= u−2

1 (EF (u2))≤ 

= CE2 (F ) , 

where the inequality uses also the fact that g−1 is increasing. 

To see the equivalence between 1 and 3, note that 

u001 g00u02 + g0u002 u2
00 g00 g00 

rA,1 = −
u01 
= −

g0u02 
= −

u2
0 − 

g0 
= rA,2 − 

g0 
. 

Hence, 

g00 = g0 (rA,2 − rA,1) .· 

Thus, rA,1 ≥ rA,2 everywhere if and only if g00 ≤ 0 everywhere, which is true if and only 

if g is concave. 

Since one can envision and individual with two different initial wealths as two different 

decision makers, the above characterization allows one to explore how one’s attitude 

towards risk changes as his initial wealth level changes. To do this, let us write w for the 

initial wealth level of an individual and write lotteries as changes in his wealth. That is, 

given any lottery z, the  final wealth of the individual is x = w + z. Define u (·|w) by 

u (z|w) =  u (z + w) . 
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The coefficient of absolute risk aversion under initial wealth w0 is 

rA (z|w) = −u00 (z + w) /u0 (z + w) = rA (z + w) . 

Corollary 1 The decision maker becomes less risk averse against the changes in his 

wealth (z) when his initial wealth increases if and only if he has decreasing absolute risk 

aversion. 

Proof. By Proposition 3, it suffices to show that rA (·|w) is decreasing in w (i.e. 

rA (·|w0) ≤ rA (·|w) whenever w0 ≥ w) if and  only  if  rA is decreasing. But this is 

immediate because rA (z|w) = rA (z − w) by definition. 

One can further conclude that if the decision maker has constant absolute risk aver

sion, then his attitude toward the risk in changes in his wealth ( z) is independent of his 

initial wealth. 

Similar facts can be obtained about the decision maker’s attitudes toward the risk in 

multiplication of his wealth, using relative risk aversion instead. To do that, write y for 

the multiplication of his initial wealth so that his final wealth level is x = yw. Define 

uy (·|w) by 
uy (z|w) = u (yw) . 

The coefficient of absolute risk aversion against y under initial wealth w is 

rA,y (z|w) = −uy00 (y|w) /uy0 (y|w) = −w0u00 (yw) /u0 (yw) = rR (yw) . 

Hence, 

Corollary 2 DM’s risk aversion against the multiplication y in  his wealth  is decreasing  

in his initial wealth w0 if he has decreasing relative risk aversion rR; DM’s risk aversion 

against the multiplication y in his wealth is independent of his initial wealth w0 if he has 

constant relative risk aversion rR. 

4.2 Applications 

4.2.1 Insurance 

Consider a decision maker who has initial wealth of w and may lose 1 unit of his wealth 

with probability p. He can buy an insurance, which is a divisible good. A unit insurance 
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costs q and covers one unit of loss in case of a loss. We want to understand his demand 

for insurance. Let λ be the amount of insurance he buys. His expected utility is 

U (λ) =  u (w − qλ) (1  − p) +  u (w − qλ − (1 − λ)) p. 

First consider the case of actuarially unfair price q > p, which is natural given that the 

insurance company needs to cover its operational costs. In that case, he buys only a 

partial insurance, i.e., λ <  1. Indeed, 

U 0 (1) = (p (1 − q) − q (1 − p)) u0 (w − q) < 0, 

i.e., U is strictly increasing at the full insurance level, and hence optimal λ must be 

less than 1. Therefore, he bears some of the risks no matter how risk averse he is and 

how low the mark up q − p is. This is because when the amount of risk gets lower and 

lower, u becomes approximately linear and the decision maker becomes approximately 

risk neutral. 

Now consider the case of q = p, the actuarially fair price. This case is important 

in the literature because it corresponds to the competitive price (assuming insurance 

companies do not have any other costs). In that case, he buys full insurance (i.e. λ = 1). 

To see this, note that under actuarially fair price, his expected wealth is Eλ [x] =  w − q 

for each λ. Hence, for any λ <  1, 

CE (λ) < Eλ [x] =  w − q = CE (1) , 

where CE (λ) is the certainty equivalent of wealth when he buys λ units of insurance. 

Thus, λ = 1  yields higher certainty equivalence than any other λ. 

Finally, consider a more risk averse decision maker with certainty equivalence oper

ator CE0. If the former decision maker buys full insurance, so will the new one. Indeed, 

for any λ <  1, 

CE0 (λ) ≤ CE (λ) < CE  (1) = CE0 (1) , 

where the first inequality is the fact that the new decision maker is more risk averse, the 

second inequality is by the fact that full insurance was optimal for the original decision 

maker and the equality is by the fact that there is no risk under full insurance. 
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4.2.2 Optimal Portfolio Choice 

Consider a decision maker with initial wealth w. There is also a risky asset that yields 

z for each dollar invested. Write F for the cdf of z. We want to understand how much 

the decision maker would invest in the risky asset. Write α for the level of investment 

and α∗ for the optimal α. The expected utility is Z 
U (α) =  u (w + α (z − 1)) dF, 

which is a concave function. The optimal investment is determined by the first-order 

condition Z 
U 0 (α∗) =  u0 (w + α∗ (z − 1)) (z − 1) dF = 0. 

First observe  that  he  will  not take any  risk  if  the expected  return  E [z]−1 is not positive. 
Indeed, if E [z] − 1 ≤ 0, Z 

U 0 (0) = u0 (w) (z − 1) dF = u0 (w) (E [z] − 1) ≤ 0. 

On the other hand, he will invest a positive amount as long as any positive expected 

return (E [z] − 1 > 0): 

U 0 (0) = u0 (w) (E [z] − 1) > 0. 

This is, again, because he is approximately risk neutral against small risks. 

A main  finding in this example is that more risk averse agents invest less in the 

risky asset. I will show this intuitive fact formally next. Consider two decision makers 

DM1 and DM2 with utility functions u1 and u2, respectively, such that DM1 is more 

risk averse than DM2. Hence, u1 = g u2 for some concave increasing function g with ◦ 
g0 (w) = 1. Denote the variables for decision maker i by subscript i, e.g., by writing 

α∗ 
1 and α∗ 

2 for the optimal investments of DM1 and DM2, respectively. Now, for any 

α, since  u01 (w + α (z − 1)) = g0 (w + α (z − 1)) u2
0 (w + α (z − 1)), u1

0 (w + α (z − 1)) ≥ 

u0 (w + α (z − 1)) if and only if z ≤ 1. Hence, [u0 (w + α (z − 1)) − u0 (w + α (z − 1))] (z − 1) ≤2 1 2 

0 everywhere. Thus, for every α, Z 
U 0 (α) − U 0 (α) =  [u01 (w + α (z − 1)) − u02 (w + α (z − 1))] (z − 1) dF ≤ 0.1 2 

Therefore, α∗ 
1 ≤ α2

∗. (One way to see this is to observe that U1
0 (α∗ 

2) ≤ U2
0 (α∗ 

2) = 0. 

Hence, U1 is decreasing at α∗ 
2 and must have been maximized at a lower value.) 



40 CHAPTER 4. ATTITUDES TOWARDS RISK 

Together with Corollary 1, the above finding yields the following monotone compar

ative statics on the optimal investment level as a function of initial wealth: 

•	 if the agent has decreasing absolute risk aversion, then α∗ is increasing with the 

initial wealth level w; 

•	 if the agent has constant absolute risk aversion, then α∗ is independent of the 

initial wealth level w. 

The optimal level of investment as a proportion of the initial wealth is related to the 

relative risk aversion. To see this, write β = α/w, and observe that the final wealth level 

is 

x = w + βw (z − 1) = w (1 + β (z − 1)) .·

Hence, the risk is about the multiplication 1 +  β (z − 1) of his initial wealth. From the 

above finding and Corollary 2, we can conclude following: 

•	 If DM has decreasing relative risk aversion, then the optimal investment level β∗ 

as a proportion of the initial wealth w is increasing in w; 

•	 If DM has constant relative risk aversion, then the optimal investment level β∗ as 

a proportion of the initial wealth w is independent of w; i.e. α∗ = bw for some 

constant b. 

4.2.3 Optimal Risk Sharing 

Consider a set of agents N = {1, . . . , n}. Each  i has a concave,differentiable, and 

bounded utility function ui. There is an unknown state s ∈ S. Each  agent  i has a risky 

asset x̄i : S R, whose outcome depends on the state. A feasible allocation is a list → 

(x1, . . . , x ) of consumption plans xi : S R such that n	 → 

x1 (s) +  + xn (s) ≤ x̄1 (s) +  + x̄n (s)	 (4.1) · · · 	 · · ·

for each s. We want to explore the Pareto-optimal allocations. To this end, write A for 

the set of all feasible allocations. Note that A is a convex set. Write also 

V = {(E (u1 (x1)) , . . . , E (un (xn))) | (x1, . . . , xn) ∈ A} 
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for the set of feasible utility vectors and V̄ = {v|v ≤ v0 for some v0 ∈ V } for the com
prehensive closure of V .  Note that since  each  ui is concave and A is convex, V̄ is also a 

convex set. 

Now consider any Pareto-optimal allocation x∗ = (x1
∗, . . . , x∗ 

n). By  definition, the 

utility vector (E (u1 (x1
∗)) , . . . , E (un (xn

∗ ))) is on the Pareto-frontier of the set V̄ . Since  

V̄ is convex, (E (u1 (x1
∗)) , . . . , E (un (xn

∗ ))) is a solution to the program P P 
max λivi =  max  λivi 

(v1,...,vn)∈V̄ i∈N (v1,...,vn)∈V i∈N 

for some vector λ = (λ1, . . . , λn) of positive coefficients. Equivalently, x∗ is a solution to 

the program ∙ ¸P 
max E λiui (xi) . 

(x1,...,xn)∈A i∈N 

Hence, for each s ∈ S, x∗ (s) = (x∗ (s) , . . . , x∗ 
n (s)) is a solution to the program 1 ∙ ¸P 

max E λiui (xi (s)) subject to (4.1). 
(x1(s),...,xn(s)) i∈N 

That is, the Pareto-optimal risk sharing allocations can be written as a maximization 

of weighted sum of utilities at each state where the utility weight of individuals are 

independent of the state. While it is possible to compensate one individual for his 

loss in one state by using a higher utility weight in another state, the above finding 

establishes that such a compensation is not Pareto optimal. The optimality requires 

that we determine the allocation of the consumption at each state independent of what 

allocation would have been in another state. 

Now suppose that x̄i ∼ N (μ̄i, σ
2 
i ) and (x̄1, . . . , x̄n) are stochastically independent. 

Assume also that the agents have constant absolute risk aversion: ui (x) =  −e−αix. The  

above analysis implies that in any Pareto-optimal allocation x∗ each agent i owns a share 

λi,j in each asset x̄j in addition to a constant consumption level that add up to zero. 

To see this, note that we can transfer payoffs in terms of certainty equivalences because 

CEi (xi) =  E [xi]−V ar (xi) αi/2 when xi is normal. That is, we have transferable utility 

in CE space. Hence, Pareto optimality requires that x∗ is a solution to 

max 
X 

CEi (xi) =  max  
X ∙ 

1 
αiλ

2 σ2
¸ 

= 
X 

μ̄i − min 
X 1 

αiλ
2 σ2μi − i,j j i,j j2 2 

i∈N i,j i,j i,j P 
where i λi,j = 1. The  first order condition then yields 

αi 
= .λi,j 

α1 + + α· · · n 

x 
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That is, in any Pareto-optimal allocation, each individual i owns λi,j = αi/ (α1 + + αn)· · ·
portion of  each asset.  The  expected payoffs of individuals can be varied optimally by 

only transferring deterministic wealth between them. 
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