
Chapter 8 

Rationalizability 

The definition of a game (N,S, u1, . . . , un) implicitly assumes that 

1. the set of players is N , the set of available strategies to a player i is Si, and  the  

player i tries to maximize the expected value of ui : S R according to some  → 

belief, and that 

2.	 each player knows 1, and that 

3.	 each player knows 2, and that


. . . 


n	 each player knows n− 1 

. . .  

ad infinitum. 

That is, it is implicitly assumed that it is common knowledge among the players 

that the game is (N,S, u1, . . . , un) and that players are rational (i.e. they are expected 

utility maximizers). As a solution concept, Rationalizability yields the strategies that 

are consistent with these assumptions, capturing what is implied by the model (i.e. the 

game). Other solution concepts impose further assumptions, usually on players’ beliefs, 

to obtain sharper predictions. In this lecture, I will formally introduce rationalizability 

and present some of its applications. The outline is as follows. I will first illustrate the 

idea on a simple example. I will then present the formal theory. I will finally apply 

rationalizability to Cournot and Bertrand competitions. 

73 
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8.1 Example 

Consider the following game. 
1\2 L  R  

T 2,0 -1,1 

0,10 0,0 

-1,-6 2,0 

(8.1) 
M 

B 

A player is said to be rational if he plays a best response to a belief about the other 

players’ strategies. What does rationality imply for this game? 

Consider Player 1. He is contemplating about whether to play T, or M, or B. A quick 

inspection of his payoffs reveals  that  his best  play  depends on  what he thinks the  other  

player does. Let’s then write p for the probability he assigns to L (as Player 2’s play), 

representing his belief about Player 2’s strategy. His expected payoffs from  playing  T,  

M, and B are 

UT = 2p − (1− p) = 3p − 1, 

UM = 0, 

UB = −p + 2(1− p) = 2− 3p, 

respectively. These values as a function of p are plotted in the following graph: 

U 
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UT 

2 
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As it is clear from the graph, UT is the largest when p > 1/2, and  UB is the largest when 

p < 1/2. At  p = 1/2, UT = UB > 0. Hence, if player 1 is rational, then he will play B 

when p < 1/2, D  when  p > 1/2, and  B  or D  if  p = 1/2. 

Notice that, if Player 1 is rational, then he will never play M–no matter what he 

believes about the Player 2’s play. Therefore, if we assume that Player 1 is rational 

(and that the game is as it is described above), then we can conclude that Player 1 

will not play M. This is because M is a strictly dominated strategy. In particular, the 

mixed strategy that puts probability 1/2 on T and probability 1/2 on B yields a higher 

expected payoff than strategy M no matter what (pure) strategy Player 2 plays. A 

consequence of this is that M is never a weak best response to a belief p, a general fact 

that will be established momentarily. 

We now want to understand the implications of the assumption that players know 

that the other players are also rational. Now, rationality of player 1 requires that he 

does not play M. For Player 2, her both actions can be a best reply. If she thinks that 

Player  1 is not  likely  to  play  M,  then  she must play R, and  if  she thinks that it is very  

likely that Player 1 will play M, then she must play L. Hence, rationality of player 2 

does not put any restriction on her behavior. But, what if she thinks that it is very 

likely that player 1 is rational (and that his payoff are as in (8.1))? In that case, since 

a rational player 1 does not play M, she must assign very small probability for player 1 

playing M. In fact, if she knows that player 1 is rational, then she must be sure that he 

will not play M. In that case, being rational, she must play R. In summary, if player 2 

is rational and she knows that player 1 is rational, then she must play R. 

Notice that we first eliminated all of the strategies that are strictly dominated 

(namely M), then taking the resulting game, we eliminated again all of the strate-

gies that are strictly dominated (namely L). This is called twice iterated elimination of 

strictly dominated strategies. The resulting strategies are the strategies that are consis-

tent with the assumption that players are rational and they know that the other players 

are rational. 

As we impose further assumptions about rationality, we keep iteratively eliminating 

all strictly dominated strategies (if there remains any). Recall that rationality of player 

1 requires him to play T or B, and knowledge of the fact that player 2 is also rational 

does not put any restriction on his behavior–as rationality itself does not restrict Player 
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2’s behavior. Now, assume that Player 1 also knows (i) that Player 2 is rational and (ii) 

that Player 2 knows that Player 1 is rational (and that the game is as in (8.1)). Then, 

as the above analysis snows, Player 1 must know that Player 2 will play R. In that case, 

being rational he must play B. Therefore, common knowledge of rationality implies that 

Player 1 plays B and Player 2 plays R. 

In the next section, I will apply these ideas more generally. 

8.2 Theory 

Fix a game (N,S, u1, . . . , un). To be concrete, define the concepts of belief, best response, 

and rationality as follows. 

Definition 26 For any player i, a  (correlated)  belief of i about the other players’ strate-

gies is a probability distribution μ on S−i = 
Q

j=i Sj.−i 6

The essential part of this definition is that the belief μ−i of player i allows correlation 

between the other players’ strategies. For example, in a game of three players in which 

each player is to choose between Left and Right, Player 1 may believe that with proba-

bility 1/2 both of the other players will play Left and with probability 1/2 both players 

will play Right. Hence, viewed as mixed strategies, it may appear as though Players 2 

and 3 use a common randomization device, contradicting the fact that Players 2 and 3 

make their decisions independently. One may then find such a correlated belief unrea-

sonable. This line of reasoning is based on mistakenly identifying a player’s belief with 

other players’ conscious randomization. For Player 1 to have such a correlated belief, he 

does not need to believe that the other players choose their decisions together. Indeed, 

he does not think that the other players are using randomization device. He thinks that 

each of the other players play a pure strategy that he does not know. He may assign 

correlated probabilities on the other players strategies because he may assign positive 

probability to various theories and each of these theories may lead to a prediction about 

how the players play. For example, he may think that players play Left (as in the cars 

in England) or players play Right (as in the cars in France) without knowing which of 

the theories is correct.  

Depending on whether one allows correlated beliefs, there are two versions of Ratio-

nalizability. Because of the above reasoning, in this course, I will focus on correlated 
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version of Rationalizability. Note that the original definitions of Bernheim (1985) and 

Pearce (1985) impose independence, and these concepts are identical in two player games. 

Definition 27 The expected payoff from a strategy si against a belief μ−i is ¡ ¢ X 
ui si, μ−i = ui (si, s−i) μ−i (s−i) . 

s−i∈S−i 

Definition 28 For any player i, a  strategy  s∗ 
i is a best response to a belief μ−i if and 

only if 

ui(s
∗ 
i , μ−i) ≥ ui(si, μ−i),∀si ∈ Si. 

Here I use the notion of a weak best reply, requiring that there is no other strategy 

that yields a strictly higher payoff against the belief. A notion of strict best reply would 

require that s∗ yields a strictly higher expected payoff than any other strategy. 

Definition 29 For any player i, playing  a  strategy  si is said to be rational if and only 

if si is a best response to some belief μ−i. 

Playing a strategy is not rational if and only if it is never a weak best reply. This 

idea of rationality is closely related to the following notion of dominance. 

Definition 30 A strategy  s∗ 
i strictly dominates si if and only if 

ui(s
∗ 
i , s−i) > ui(si, s−i), ∀s−i ∈ S−i. P 

Similarly, a mixed strategy σi strictly dominates si if and only if ui(σi, s−i) ≡ s0i∈Si 
σi(si

0)ui(si
0 , s−i) > 

ui(si, s−i),∀s−i ∈ S−i. 

That is, no matter what the other players play, playing s∗ 
i is strictly better than 

playing si for player i. In that case, if i is rational, he would never play the strictly 

dominated strategy si. That is, there is no belief under which he would play si, for  s∗ 
i 

would always yield a higher expected payoff than si no matter what player i believes 

about the other players.1 

Definition 31 A strategy  si is said to be strictly dominated if and only if there exists 

a pure or mixed strategy that strictly dominates si. 

1As a simple exercise, prove this statement. 
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A Notice that neither of the pure strategies T, M, and B dominates any strategy. 

Nevertheless, M is dominated by the mixed strategy that σ1 that puts probability 1/2 

on each of T and B. For each p, the payoff from σ1 is 

1 1 1 
Uσ1 = (3p− 1) + (2 − 3p) =  ,

2 2 2

which is larger than 0, the payoff from M. Recall that in our example there is no belief 

(p) under which M is a best response. This is indeed a general result: 

Theorem 9 Playing a strategy si is not rational for i (i.e. si is never a weak best 

response to a belief μ−i) if and  only  if  si is strictly dominated. 

Proof. I will only show that if si is not strictly dominated it is a weak best response 

to some belief. (The converse is straightforward.) For each mixed strategy σi, consider  

the utility vector 

ui (σi) = (ui (σi, s−i))s−i∈S−i , 

and let Ui be the set of all such vectors. Clearly, Ui is convex. Take any si that is not 

strictly dominated, and define © ª 
−iVi = v ∈ RS |v À ui (si) . 

Clearly, Vi is also convex, and since si is not strictly dominated, Ui ∩ Vi = ∅. Hence,  by  

the separating-hyperplane theorem there exists μ−i ∈ RS−i such that μ−i ·(ui (σi) − vi) ≤ 

0 for all ui (σi) ∈ Ui and v ∈ Vi. By  definition of Vi, μ−i ≥ 0. Since  ui (si) is on the 

boundary of Vi,  it is  also true that for  all  ui (σi) ∈ Ui, μ−i ·(ui (σi) − ui (si)) ≤ 0, showing 

that ¡ ¢ ¡ ¢ 
ui σi, μ−i = μ−i · ui (σi) ≤ μ−i · ui (si) =  ui σi, μ−i . 

(In this proof, one can allow S−i to be infinite.) 

Theorem 9 states that if we assume that players are rational (and that the game is 

as described), then we conclude that no player plays a strategy that is strictly dominated 

(by some mixed or pure strategy), and this is all we can conclude. 

Let us write


Si 
1 = {si ∈ Si| si is not strictly dominated} .
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By Theorem 9, Si 
1 is the set of all strategies that are best response to some belief. 

Let us now explore the implications of the assumption that player i is rational and 

knows that the other players are rational. To this end, we consider the strategies si 
that are best response to a belief μ−i of i on S−i such that for each s−i = (sj)j=i with 6

μ−i (s−i) > 0 and for each j, there exists a belief μj of j on S−j such that sj is a best 

response to μj. Here, the first part (i.e.  si is a best response to a belief μ−i) corresponds 

to rationality of i and the second part (i.e. if μ−i (s−i) > 0, then  sj is a best response to 

a belief μj) corresponds to the assumption that i knows that j is rational. By Theorem 

9, each such sj is not strictly dominated, i.e., sj ∈ Sj 
1 . Hence, by another application of 

Theorem 9, si is not strictly dominated given S−
1 
i, i.e., there does not exist a (possibly 

mixed) strategy σi such that 

ui (σi, s−i) > ui (si, s−i) ∀s−i ∈ S−
1 
i. 

Of course, by Theorem 9, the converse of the last statement is also true. Therefore, the 

set of strategies that are rationally played by player i knowing that the other players is 

also rational is © ª 
S2 = si ∈ Si| si is not strictly dominated given S−

1 
i .i 

By iterating this logic, one obtains the following iterative elimination procedure, 

called iterative elimination of strictly-dominated strategies. 

Definition 32 (Iterative Elimination of Strictly-Dominated Strategies) Set S0 = 

S, and  for any  m > 0 and set © ª 
Si
m = si ∈ Si| si is not strictly dominated given S−

m
i
−1 , 

i.e., si ∈ Sm iff there does not exist any σi such that i


ui (σi, s−i) > ui (si, s−i) ∀s−i ∈ S−
m
i
−1 .


Caution: Two points are crucial: 

1. We eliminate only the strictly dominated strategies. We do not eliminate a strategy 

if it is weakly dominated but not strictly dominated. For example, we do not 
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eliminate any strategy in 
L R 

T 1,1 0,0 

B 0,0 0,0 

although (T,L) is a dominant strategy equilibrium. 

2. We do eliminate the strategies that are strictly dominated by mixed strategies 

(but not necessarily by pure strategies). For example, in the game in (8.1), we do 

eliminate M although neither T nor B dominates M. 

Notice that when there are only finitely many strategies, this elimination process 

must stop at some m, i.e., there will be no dominated strategy to eliminate after a 

round. 

Note that, for any m, a  strategy  si is in Si
m if and only if it is rationally played by 

i in a situation in which (1) i is rational, (2) i knows that every player is rational, i 

knows that everybody knows that every body is rational, and . . . (m) i know that every 

body knows that . . . everybody knows that everybody is rational. That is, si is a best 

response to a belief μ

some belief μ

11 
−i such that every sj in the support of μ−i 
1 is a best response to 

22 
−j such that every every sk in  the support of  μ−j 
2 is a best response to some 

are consistent with mth-order mutual knowledge of rationality. 

Exercise 12 Using Theorem 9, prove the claim in the previous paragraph. 

3belief μ

Rationalizability corresponds to the limit of the iterative elimination of strictly-

dominated strategies. 

Definition 33 (Rationalizability) For any player i, a strategy is said to be rational-

izable if and only if si ∈ Si
∞ where \ 

= .Si
∞ Si

m 

m≥0 

Rationalizability corresponds to the set of strategies that are rationally played in sit-

uations in which it is common knowledge that everybody is rational, as defined at the be-

ginning of the lecture. When a strategy si is rationalizable it can be justified/rationalized 

−k . . .  up  to  order  m. It is in that sense Sm is the set of strategy profiles that 
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by an indefinite chain of beliefs μ−i as above. On the other hand, if a strategy is not 

rationalizable, it must have been eliminated at some stage m, and such a strategy cannot 

be rationalized by a chain of beliefs longer than m. 

We call the elimination process that keeps iteratively eliminating all strictly dom-

inated strategies until there is no strictly dominated strategy Iterated Elimination of 

Strictly Dominated Strategies; we eliminate indefinitely if the process does not stop. We 

call a strategy rationalizable if and only if it survives iterated elimination of strictly 

dominated strategies. 

Nash Equilibrium v. Rationalizability Every Nash equilibrium is rationalizable, 

which can be shown as a straightforward exercise. Converse is not true. For example, in 

The Battle of The Sexes, (Opera, Ballet) is not a Nash equilibrium, but both Opera and 

Ballet are rationalizable strategies. Of course, these strategies correspond to some Nash 

equilibria, but one can easily construct a game in which some rationalizable strategies 

do not correspond to any Nash equilibrium. 

Exercise 13 Show that if σ∗ (si) > 0 for some Nash equilibrium σ∗, then  si ∈ Si
∞. Find  i 

a game  (N,S, u1, . . . , un) and a strategy si ∈ Si
∞ such that no Nash equilibrium assigns 

positive probability on si. 

Example: (Beauty Contest) Consider an n-player game in which each player i has 

strategies xi ∈ [0, 100], and  payoff µ ¶2
2 x1 + xn 

ui (x1, . . . , xn) =  − xi − 
· · ·

. 
3 n 

Notice that, in this game, each player tries to play a strategy that is equal to two thirds of 

the average strategy, which is also affected by his own strategy. Each person is therefore 

interested guessing the other players’ average strategies, which depends on the other 

players’ estimate of the average strategy. Let’s apply our procedure to this game. 

First, since each strategy must be less than or equal to 100, the average cannot 

exceed 100, and hence any strategy xi > 200/3 is strictly dominated by 200/3. Indeed, 
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any strategy xi > x1 is strictly dominated by x1 where2 

2 (n− 1) 
x 1 = 100. 

3n− 2 

To show that xi > x1 is strictly dominated by x1, we  fix any  (x1, . . . , xi−1, xi+1, . . . xn) 

and show that 

1 ui (x1, . . . , xi−1, xi, xi+1, . . . xn) < ui 
¡
x1, . . . , xi−1, x  , xi+1, . . . xn 

¢ 
. (8.2) 

By taking the derivative of ui with respect to xi, we  obtain  µ ¶µ ¶
∂ui 2 2 x1 + xn 

= −2 1 − xi − 
· · ·

. 
∂xi 3n 3 n 

Clearly, ∂ui/∂xi < 0 if µ ¶
xi − 

3

2 x1 + 
n 
· · ·xn 

> 0, 

which would  be  the case if  
2 X 

xi > xj . (8.3) 
3n− 2 

j=6 i P 
But since each xj ≤ 100, the  sum  xj is less than or equal to (n− 1) 100. Hence, it j=i6

suffices that 
2 1 xi > (n− 1) 100 = x . 

3n− 2 

Therefore, in the region xi > x1 , ui is a strictly decreasing function of xi and (8.2) is 

satisfied. This shows that all the strategies xi > x1 are eliminated in the first round. 

On the other hand, each xi ≤ x1 is a best response to some (x1, . . . , xi−1, xi+1, . . . xn) 

with 
2 X 

xi = xj . 
3n− 2 

j=6 i 

Therefore, at the end of the first round the set of surviving strategies is [0, x1]. 

Now, suppose that at the end of round m, the set of surviving strategies is [0, xm] 
m mfor some number x . By repeating the same analysis above with x instead of 100, we 

can conclude that at the end of round m+ 1, the set of surviving strategies is [0, xm+1] 

where 
2 (n− 1)m+1 m x = x . 
3n− 2 

2Here x1 is just a real number, where superscript 1 indicates that we are in Round 1. 
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The solution to this equation with x0 = 100  is 

∙ ¸
2 (n − 1) m 

x m = 100. 
3n − 2 

Therefore, for each m, at  the  end of round  m, a strategy  xi survives if and only if 

m 

0 ≤ xi ≤ 

∙ 
2 (

3n

n 
−
− 
2

1)
¸
100. 

Since ∙ ¸
2 (n − 1) m 

lim 100 = 0, 
m→∞ 3n − 2 

the only rationalizable strategy is xi = 0. 

mNotice that the speed at which x goes to zero determines how fast we eliminate 

the strategies. If the elimination is slow (e.g. when 2 (n − 1) / (3n − 2) is large), then 

many strategies are eliminated at very high iterations. In that case, predictions based on 

rationalizability will heavily rely on strong assumptions about rationality, i.e., everybody 

knows that everybody  knows that ...  everybody is rational.  For example,  if  n is small or 

the ratio 2/3 is replaced by a small number, the elimination is fast and the predictions 

of rationalizability are more reliable. If the n is large or the ratio 2/3 is replaced by a 

number close to 1, the elimination is slow and the predictions of rationalizability are less 

reliable. In particular, the predictions of rationalizability for this game is more robust 

in a small group than a larger group. 

A general problem with rationalizability is that there are usually too many rationaliz-

able strategies; the elimination process usually stops too early. In that case a researcher 

cannot make much prediction based on such analysis. For example, in the Matching 

Pennies game 

1\2  Head  Tail  

Head -1,1 1,-1 

Tail 1,-1 -1,1 

every strategy is rationalizable, and we cannot say what the players will do. 
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8.3 Applications 

8.3.1 Cournot Competition 

Consider n firms. Each firm i produces qi ≥ 0 units of a good at marginal cost c ≥ 0 

and sell it at price 

P	= max {1− Q, 0} (8.4) 

where 

Q = q1 + qn	 (8.5) · · ·

is the total supply. Each firm maximizes the expected profit. Hence, the payoff of firm 

i is 

πi = qi (P − c) .	 (8.6) 

Assuming all of the above is commonly known, we can write this as a game in normal 

form, by setting 

•	 N = {1, 2, . . . , n} as the set of players 

•	 Si = [0,∞) as the strategy space of player i, where a typical strategy is the quantity 

qi produced by firm i, and  

•	 πi : S1 × · · · × Sn → R as the payoff function. 

Best Response In our analysis, and in the rest of the course, it will be useful to know 

the best response of a firm i to the production levels of the other firms. Let us write X 
Q−i = qj (8.7) 

j=i6

for the total supply of the firms other than firm i. If  Q−i > 1, then the price P = 0 and 

the best firm i can do is to produce zero and obtain zero profit. Now assume Q−i ≤ 1. 

For any qi ∈ (0, 1− Q−i), the profit of the  firm i is 

πi (qi, Q−i) = qi (1− qi − Q−i − c) .	 (8.8) 
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(The profit is negative if  qi > 0.) By setting the derivative of πi with respect to qi to 

zero,3 we obtain the best production level 

q B (Q−i) =
1− Q−i − c

. (8.9) i 2 

The profit function is plotted in Figure 8.1. The best response function is plotted in 

Figure 8.2. 

-0.2 

0 

-cqi 

qi(1-Q-i-c) 

Profit 

0 1(1-Q-i-c)/2 1-Q-i-c 

Figure 8.1: 

Cournot Duopoly 

Now, consider the case of two firms. In that case, for i =6 j, we have  Q−i = qj. 

Nash Equilibrium In order to have a Nash equilibrium, we must have 

q1 = q1 
B (q2) ≡ 

1− q2 − c 
2 

3I.e. 
∂πi 
∂qi 

= 1− 2qi − Q−i − c = 0. 
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qi 

1− c 

2 qi=qi
B(Q-i) 

Q-i 

1-c 

Figure 8.2: 

and 

q2 = q2 
B (q1) ≡ 

1 − q1 − c
. 

2 
Solving these two equations simultaneously, we obtain 

q1 
∗ = q2 

∗ =
1 − c 
3 

as the only Nash equilibrium. Graphically, as in Figure 8.3, we plot the best response 

functions of each firm and identify the intersections of the graphs of these functions as 

Nash equilibria. In this case, there is a unique intersection, and therefore there is a 

unique Nash equilibrium. 

Rationalizability The (linear) Cournot duopoly game we consider here is "dominance 

solvable" i.e. there is a unique rationalizable strategy. Let us first consider the first 

couple rounds of elimination to see this intuitively; we will then show mathematically 

that this is indeed the case. 

Round 1 Notice that a strategy q̂i > (1 − c) /2 is strictly dominated by (1 − c) /2. 

To see this, consider any qj. As  in  Figure  8.1,  πi (qi, qj ) is strictly increasing until 

qi = (1  − c− qj) /2 and strictly decreasing thereafter. In particular, 

πi ((1 − c− qj ) /2, qj) ≥ πi ((1 − c) /2, qj ) > πi (q̂i, qj ) , 

showing that q̂i is strictly dominated by (1 − c) /2. We therefore eliminate all q̂i > 

(1 − c) /2 for each player i. The resulting strategies are as follows, where the shaded 
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q2 

q1=q1
B(q2) 

q* 

1 − c 

2 q2=q2
B(q1) 

q1 

1-c 

Figure 8.3: 

area is eliminated: 

1-c1-c

1 −1− c
c
2
2

1-c1 −1 c 1-cc−
22

Round 2 In the remaining game qj ≤ (1 − c) /2. Consequently, any strategy 

q̂i < (1 − c) /4 is strictly dominated by (1 − c) /4. To see this, take any qj ≤ (1 − c) /2 

and recall from Figure 8.1 that πi is strictly increasing until qi = (1  − c− qj) /2, which  

is  greater than or equal  to(1 − c) /4. Hence, 

πi (q̂i, qj ) < πi ((1 − c) /4, qj ) ≤ πi ((1 − c− qj ) /2, qj ) , 
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showing that q̂i is strictly dominated by (1 − c) /4. We will therefore eliminate all q̂i 
with q̂i < (1 − c) /4. The remaining strategies are as follows: 

1-c1-c

1 −1− c
c
2
2

1-c1 − 1-c1 cc−
22

Notice that the remaining game is a smaller replica of the original game. Applying the 

same procedure repeatedly we eliminate all strategies except for the Nash equilibrium. 

(After every two rounds, we obtain a smaller replica.) Therefore, the only rationalizable 

strategy is the unique Nash equilibrium strategy: 

q∗ = (1  − c) /3.i 

A more formal treatment We can prove this more formally by invoking the following 

lemma repeatedly: 

Lemma 2 Given that qj ≤ q̄, every strategy q̂i with q̂i < qi
B (q̄) is strictly dominated by 

qi
B (q̄) ≡ (1 − q̄ − c) /2. Given that qj ≥ q̄, every  strategy  q̂i with q̂i > qi

B (q̄) is strictly 

dominated by qi
B (q̄) ≡ (1 − q̄ − c) /2. 

Proof. Let’s first prove the first statement. Take any qj q̄. Note  that  πi (qi; qj) is≤ 

strictly increasing in qi at any qi < qi
B (qj). Since  q̂i < qi

B (q̄) ≤ qi
B (qj ),4 this implies 

that ¡ ¢ 
πi (q̂i, qj ) < πi qi

B (q̄) , qj . 

That is, q̂i is strictly dominated by qi
B (q̄). 

To prove the second statement, take any qj q̄. Note  that  πi (qi; qj) is strictly≤ 

decreasing in qi at any qi > qi
B (qj). Since  qi

B (qj) ≤ qi
B (q̄) < q̂i, this implies that  

πi (q̂i, qj ) < πi 
¡
qi
B (q̄) , qj 

¢ 
. 

4This is because qi
B is decreasing. 
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That is, q̂i is strictly dominated by qi
B (q̄). 

Now, define a sequence q0, q1, q2 , . . .  by q0 = 0 and 

q m = q B 
¡
q m−1 

¢ ¡
m−1 

¢ 
/2 = (1− c) /2− q m−1/2i ≡ 1− q − c 

for all m > 0. That  is,  

q 0 = 0  

q 1 = 
1− c 
2 

q 2 = 
1− c 
2 
− 
1− c 
4 

q 3 = 
1− c 
2 
− 
1− c 
4 

+ 
1− c 
8 

... 

m 1− c 1− c 1− c m 1− c 
q = + 

m2 
− 

4 8 
− · · ·− (−1)

2
... 

Theorem 10 The set of remaining strategies after any odd round m (m = 1, 3, . . .) is  

[qm−1, qm]. The set of remaining strategies after any even round m (m = 2, 4, . . .) is  
m[q , qm−1].The set of rationalizable strategies is {(1− c) /3}. 

Proof. We use mathematical induction on m. For  m = 1,  we have already  proven  the  

statement. Assume that the statement is true for some odd m. Then,  for  any  qj available 
mat even round m+1, we  have  qm−1 ≤ qj ≤ q . Hence, by Lemma 2, any q̂i < qi

B (qm) =  

qm+1 is strictly dominated by qm+1 and eliminated. That is, if qi survives round m+ 1, 

then qm+1 ≤ qi ≤ qm . On the other hand, every qi ∈ [qm+1, qm] =  
£ 
qB (qm) , qB (qm−1)

¤
i i 

is a best response to some qj with qm−1 ≤ qj ≤ qm, and it is not eliminated. Therefore, 

the set of strategies that survive the even round m+ 1 is [qm+1, qm]. 

Now, assume that the statement is true for some even m. Then, for any qj available 
mat odd round m+ 1, we  have  q ≤ qj ≤ qm−1 . Hence, by Lemma 2, any q̂i > qi

B (qm) =  

qm+1 is strictly dominated by qm+1 and eliminated. Moreover, every qi ∈ [qm, qm+1] =£ ¤
qi
B (qm−1) , qi

B (qm) is a best response to some qj with qm ≤ qj ≤ qm−1, and  it  is  not  

eliminated. Therefore, the set of strategies that survive the odd round m+1 is [qm, qm+1]. 

Finally, notice that 

lim q m = (1− c) /3. 
m→∞ 
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Therefore the intersections of the above intervals is {(1 − c) /3}, which is the set of 

rationalizable strategies. 

Cournot Oligopoly 

We will now consider the case of three or more firms. When there are three or more 

firms, rationalizability does not help, i.e., we cannot eliminate any strategy less than the 

monopoly production q1 = (1  − c) /2. 

In the first round we eliminate any strategy qi > (1 − c) /2, using the same argument 

in the case of duopoly. But in the second round, the maximum possible total supply by 

the other firms is 

(n− 1) (1 − c) /2 ≥ 1 − c, 

where n is the number of firms. The best response to this aggregate supply level is 0. 

Hence, we cannot eliminate any strategy in round 2. The elimination process stops, 

yielding [0, (1 − c) /2] as the set of rationalizable strategies. 

Of course, Cournot oligopoly has a unique Nash equilibrium as in the Cournot 

duopoly. While the Nash equilibrium remains to make strong predictions as we intro-

duce new firms, the predictions of rationalizability become rather weak. (In equilibrium 

analysis the weak predictions of rationalizability reappears as instability of equilibrium, 

making equilibrium behavior highly sensitive to the specification of beliefs.) 

8.3.2 Bertrand Competition 

Consider two firms. Simultaneously, each firm i sets a price pi. The  firm i with the lower 

price pi < pj sells 1 − pi units and the other firm cannot sell any. If the firms set the 

same price, the demand is divided between them equally. That is, the amount of sales 

for firm i is 

1 − pi if pi < pj 

Qi (p1, p2) =  1−pi if pi = pj2 

0 otherwise. 

⎧ ⎪⎪⎨ ⎪⎪⎩
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We assume that it costs noting to produce the good (i.e. c = 0). Therefore, the profit 

of a firm i is 

πi (p1, p2) = piQi (p1, p2) =  

⎧ ⎪⎪⎨ ⎪⎪⎩


(1− pi) pi if pi < pj 
(1−pi)pi if pi
2
 = pj 

0 otherwise. 

Assuming all of the above is commonly known, we can write this formally as a game 

in normal form by setting 

• N = {1, 2} as the set of players 

• Si = [0,∞) as the set of strategies for each i, with  price  pi a typical  strategy,  

• πi as the utility function. 

Observe that when  pj = 0, πi (p1, p2) = 0 for every pi, and hence every pi is a best 

response to pj = 0. This has two important implications: 

1. Every strategy is rationalizable (we cannot eliminate any strategy because each of 

them is a best reply to zero). 

2. p∗ 
1 = p∗ 

2 = 0 is a Nash equilibrium. 

In the rest of the notes, we will first show that this is indeed the only Nash equilib-

rium. In other words, even with two firms, when the firms compete by setting prices, 

the competitive equilibrium will emerge. We will then show that if we modify the game 

slightly by discretizing the set of allowable prices and putting a minimum price, then the 

game becomes dominance-solvable, i.e., only one strategy remains rationalizable. In the 

modified game, the minimum price is the only rationalizable strategy, as in competitive 

equilibrium. Finally we will introduce small search costs on the part of consumers, who 

are not modeled as players, we will see the equilibrium behavior is dramatically different 

from the equilibrium behavior in the original game and competitive equilibrium. 

Nash Equilibrium 

Theorem 11 The only Nash equilibrium is p∗ = (0, 0). 
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Proof. We have seen that p∗ = (0, 0) is a Nash equilibrium. We will show that if 

(p1, p2) is a Nash equilibrium, then p1 = p2 = 0. To do this, take any Nash equilibrium 

(p1, p2). We  first show that p1 = p2. Towards a contradiction, suppose that pi > pj . If  

pj = 0, then  πj (pi, pj ) = 0, while  πj (pi, pi) = (1− pi) pi/2 > 0. That is, choosing pi is 

a profitable deviation for firm j, showing  that  pi > pj = 0 is not a Nash equilibrium. 

Therefore, in order pi > pj to be an equilibrium, we must have pj > 0. But  then,  firm i 

has a profitable deviation: πi (pi, pj ) = 0 while πi (pj, pij ) = (1− pj ) pj /2 > 0. All in all, 

this  shows that we cannot have  pi > pj in equilibrium. Therefore, we must have p1 = p2. 

But if p1 = p2 in a Nash equilibrium, then it must be that p1 = p2 = 0. This is because 

if p1 = p2 > 0, then  firm 1 would have a profitable deviation: π1 (p1, p2) = (1− p1) p1/2 

while π1 (p1 − ε, p2) = (1− p1 + ε) (p1 − ε), which  is  close  to  (1− p1) p1 when ε is close 

to zero. 

Rationalizability with discrete prices 

Now suppose that the firms have to set prices as multiples of pennies, and they cannot 

charge zero price. That is, the set of allowable prices is 

P = {0.01, 0.02, 0.03, . . .} . 

The important assumption here is that the minimum allowable price pmin = 0.01 yields 

a positive profit. We will now see that the game is "dominance-solvable" under this 

assumption. In particular pmin is the only rationalizable strategy, and it is the only 

Nash equilibrium strategy. Let us start with the first step. 
monStep 1: any price p greater than the monopoly price p = 0.5 is strictly dominated 

by some strategy that assigns some probability >  0 to the price pmin = 0.01 and 
monprobability 1−  to the price p = 0.5. 

monProof. Take any player i and any price pi > p . We want to show that the mixed 

strategy σ  with σ  (pmon) = 1− and σ  
¡
pmin 

¢ 
= strictly dominates pi for some > 0. 

monTake any strategy pj > p of the other player j. We  have  

πi (pi, pj ) ≤ piQ (pi) = pi (1− pi) ≤ 0.51 0.49 = 0.2499,· 

where the first inequality is by definition and the last inequality is due to the fact that 
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pi ≥ 0.51. On the other hand, 

πi (σ
 , pj ) = (1  − ) p mon (1 − p mon) +  p min 

¡
1 − p min 

¢ 
> (1 − ) p mon (1 − p mon) 

= 0.25 (1 − ) . 

Thus, πi (σ , pj) > 0.2499 ≥ πi (pi, pj) whenever 0 < ≤ 0.0004. Choose  = 0.0004. 

Now, pick any pj ≤ pmon. Since  pi > pmon, we now  have  πi (pi, pj) = 0. But  

mon (1 − p mon) +  p min 
¡

min 
¢ 

min 
¡

min 
¢ 

πi (σ
 , pj ) =  (1  − ) p 1 − p ≥ p 1 − p > 0. 

That is, πi (σ , pj) > πi (pi, pj). Therefore, σ  strictly dominates pi. 

Step 1 yields the eliminations in the first round 1. 

monRound 1 By Step 1, all strategies pi with pi > p = 0.5 are eliminated. Moreover, 
moneach pi ≤ p is a best reply to pj = pi + 1, and is not eliminated. Therefore, the set 

of remaining strategies is 

P 2 = {0.01, 0.02, . . . , 0.5} . 

Round m Suppose that the set of remaining strategies to round m is 

Pm = {0.01, 0.02, . . . , p̄} . 

Then, the strategy p̄ is strictly dominated by a mixed strictly dominated by the mixed 

strategy σ  with σ  (p̄− 0.01) = 1 −  and σ  
¡
pmin 

¢ 
= , as we will see momentarily. We 

then eliminate the strategy p̄. There will be no more elimination because each pi < p̄ is 

a best reply to pj = pi + 0.01. 

To prove that p̄ is strictly dominated by σ , note that the profit from  p̄ for player i 

is ( 
p̄ (1 − p̄) /2 if pj = p̄,

πi (p̄, pj) =  
0 otherwise. 

On the other hand, 

πi 
¡
σp

 
¯, p̄
¢	
= (1  − ) (p̄− 0.01) (1 − p̄+ 0.01) + p min 

¡
1 − p min 

¢ 
> (1 − ) (p̄− 0.01) (1 − p̄+ 0.01) 

= (1  − ) [p̄ (1 − p̄) − 0.01 (1 − 2p̄)] . 
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Then, πi (σ  , p̄) > πi (p̄, pj) whenever 

p̄ (1 − p̄) /2 
. ≤ 1 − 

p̄ (1 − p̄) − 0.01 (1 − 2p̄) 

But p̄ ≥ 0.02, hence 0.01 (1 − 2p̄) < p̄ (1 − p̄) /2, thus the right hand side is greater than 

0. Choose 

 = 1  − 
p̄ (1 − p̄) /2 

> 0 
p̄ (1 − p̄) − 0.01 (1 − 2p̄) 

so that πi 
¡
σp̄, p̄

¢ 
> πi (p̄, pj). Moreover,  for  any  pj < p̄, 

min minπi 
¡
σp̄, pj 

¢ 
= (1  − ) (p̄ − 0.01) (1 − p̄+ 0.01) + p 

¡
1 − p 

¢ 
p min 

¡
1 − p min 

¢ 
> 0 =  πi (p̄, pj) ,≥ 

showing that σp̄ strictly dominates p̄, and completing the proof. © ª 
Therefore, the process continues until the set of remaining strategies is pmin and 

it stops there. Therefore, pmin is the only rationalizable strategy. 

Since players can put positive probability only on rationalizable strategies in a Nash 

equilibrium, the only possible Nash equilibrium is 
¡
pmin, pmin 

¢ 
, which is clearly a Nash 

equilibrium. 
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