
diagramming times square - evan pruitt


trying to find a way to put times square on one 2d surface


still trying....

ok...maybe hyperbolas
$\mathrm{x}=(-1.5: .01: 1.5)$;
\%Blue
$\mathrm{a}=1 ; \mathrm{b}=1$;
$\mathrm{m}=0 ; j=.3$;
$y 1 t=j+b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$\mathrm{y} 1 \mathrm{~b}=\mathrm{j}-\mathrm{b}$ *sqrt(( $\left.\mathrm{x}-\mathrm{m}) \cdot \wedge 2 / \mathrm{a}^{\wedge} 2+1\right)$;
\%Green
$\mathrm{a}=1 ; \mathrm{b}=2$;
$\mathrm{m}=0 ; j=0$;
$y 2 t=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge^{\wedge} 2 / a^{\wedge} 2+1\right) ;$
$\mathrm{y} 2 \mathrm{~b}=\mathrm{j}-\mathrm{b} * \operatorname{sqrt}\left((\mathrm{x}-\mathrm{m}) \cdot \wedge^{\wedge} 2 / \mathrm{a}^{\wedge} 2+1\right) ;$
\%Red
$a=.4 ; b=.3$;
$\mathrm{m}=0 ; \mathrm{j}=0$;
$y 3 t=j+b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 3 b=j-b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
\&Yellow
$\mathrm{a}=.25 ; \mathrm{b}=.45$;
$\mathrm{m}=0 ; \mathrm{j}=.3$;
$y^{4} 4=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2-1\right) ;$
$y^{4} \mathrm{r}=-\mathrm{y} 4 \mathrm{l}$;
\%Black
$a=.5 ; b=.9$;
m = 0; $j=0$;
$\mathrm{y} 51=\mathrm{j}+\mathrm{b}^{\star} \operatorname{sqrt}\left((\mathrm{x}-\mathrm{m}) . \wedge 2 / \mathrm{a}^{\wedge} 2-1\right)$;
$\mathrm{y} 5 \mathrm{r}=-\mathrm{y} 51$;
\%Cyan
$\mathrm{a}=1 ; \mathrm{b}=1.8$;
$m=0 ; j=0$;
$\mathrm{y} 61=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2-1\right)$;
$y 6 r=-y 61 ;$
figure (2);

$\left.x, y^{41,} y^{-\prime}, x, y 4 r, ~ ' y^{-\prime}, x, y 51, ~ ' k-', ~ x, ~ y 5 r, ~ ' k-', ~ x, ~ y 6 r, ~ ' c-', ~ x, ~ y 61, ~ ' c-'\right) ; ~ ; ~$

$x=(-1.5: .01: 1.5)$;
\%Blue
$a=1 ; b=1 ;$
$\mathrm{m}=0 ; j=0$;
$y 1 t=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 1 b=j-b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
\%Green
$\mathrm{a}=2 ; \mathrm{b}=2$;
m = 0; $j=0$;
$y 2 t=j+b * s q r t\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right) ;$
$\mathrm{y} 2 \mathrm{~b}=\mathrm{j}-\mathrm{b} * \operatorname{sqrt}\left((\mathrm{x}-\mathrm{m}) \cdot{ }^{\wedge} 2 / \mathrm{a}^{\wedge} 2+1\right)$;
\%Red
$\mathrm{a}=.4 ; \mathrm{b}=.2$;
$m=0 ; j=0$;
$y 3 t=j+b * \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 3 b=j-b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$

## \%Yellow

$\mathrm{a}=.25 ; \mathrm{b}=.45$;
$m=0 ; j=0$;
y4l = j + b*sqrt( $\left.(x-m) . \wedge 2 / a^{\wedge} 2-1\right) ;$
$\mathrm{y} 4 \mathrm{r}=-\mathrm{y} 4 \mathrm{l}$;

## \%Black

$\mathrm{a}=.5 ; \mathrm{b}=.9$;
$\mathrm{m}=0 ; j=0$;
$y 51=j+b^{\star} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2-1\right) ;$
$\mathrm{y} 5 \mathrm{r}=-\mathrm{y} 51$;
\%Cyan
$\mathrm{a}=1 ; \mathrm{b}=1.8$;
m = 0; $j=0$;
$\mathrm{y} 61=j+\mathrm{b}^{\star} \operatorname{sqrt}\left((\mathrm{x}-\mathrm{m}) \cdot \wedge 2 / \mathrm{a}^{\wedge} 2-1\right)$;
$\mathrm{y} 6 \mathrm{r}=-\mathrm{y} 61$;
figure(2);
 $x, y 41, ~ ' y-', x, y 4 r, ~ ' y-', ~ x, ~ y 51, ~ ' k-', ~ x, ~ y 5 r, ~ ' k-', ~ x, ~ y 6 r, ~ ' c-', ~ x, ~ y 61, ~ ' c-') ; ~$

trying to find a representative of the compressive forces in the square
$x=(-1.5: .01: 1.5)$;

## \%Blue

$a=.6 ; b=4.6$;
$\mathrm{m}=0 ; j=.9$;
$y 1 t=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 1 b=j-b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$

## \%Green

$a=.7 ; b=7.5$;
$m=0 ; j=1.6$;
$y 2 t=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2+1\right) ;$
$y^{2 b}=j-b^{\star} \operatorname{sqrt}\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2+1\right) ;$
\%Red
$\mathrm{a}=.5 ; \mathrm{b}=1.7$;
$m=0 ; j=.7$;
$y 3 t=j+b * \operatorname{sqrt}\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2+1\right) ;$
$y 3 b=j-b * s q r t\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2+1\right) ;$
qYellow
$a=.1 ; b=1.5 ;$
$m=0 ; j=1$;
$y^{41}=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2-1\right) ;$
$y 4 r=-y 41 ;$
\%Black
$a=.19 ; b=1.9$;
$m=0 ; j=0 ;$
$y 51=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2-1\right) ;$
y5r $=-\mathrm{y} 51$;

## \%Cyan

$a=.4 ; b=2$;
$m=0 ; j=0$;
$y^{61}=j+b^{\star} \operatorname{sqrt}\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2-1\right) ;$
$y 6 r=-y 61 ;$
figure(2);
plot (x, y1t, 'b-', $x, y 1 b, ~ ' b-', x, y 2 t, ~ ' g-', x, y 2 b, ~ ' g-', x, y 3 t, ~ ' r-', ~ x, ~ y 3 b, ~ ' r-', ~ 久 ~$

tried over 150 versions

spent hours that $i$ thought $i$ should have spent designing...

```
\%Blue
\(\mathrm{a}=.6 ; \mathrm{b}=4.6\);
\(\mathrm{m}=0 ; \mathrm{j}=1.3\);
\(y 1 t=j+b^{*} \operatorname{sqrt}\left((x-m) \wedge^{\wedge} / a^{\wedge} 2+1\right) ;\)
\(y 1 b=j-b^{*} \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right)\);
\%Green
\(\mathrm{a}=.7 ; \mathrm{b}=7.5\)
\(\mathrm{m}=0 ; \mathrm{j}=.6\);
\(y 2 t=j+b^{*} \operatorname{sqrt}\left((x-m) .^{\wedge} / a^{\wedge} 2+1\right) ;\)
\(y 2 b=j-b^{*} \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right)\);
\%Red
\(\mathrm{a}=.5 ; \mathrm{b}=1.7\);
\(\mathrm{m}=0 ; \mathrm{j}=.7\);
\(y 3 t=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2+1\right) ;\)
\(y 3 b=j-b^{\star}\) sqrt( \(\left.(x-m) . \wedge 2 / a^{\wedge} 2+1\right)\);
\%Yellow
\(a=.1 ; b=1.5\);
\(m=0 ; j=1\);
\(y 4 \mathrm{I}=\mathrm{j}+\mathrm{b}^{*} \operatorname{sqrt}\left((\mathrm{x}-\mathrm{m}) .^{\wedge} 2 / \mathrm{a}^{\wedge} 2-1\right)\)
\(y 4 \mathrm{r}=-\mathrm{y} 41\);
\%Black
\(\mathrm{a}=.19 ; \mathrm{b}=1.9\);
\(\mathrm{m}=.4 ; \mathrm{j}=.3\)
\(y 5 I=j+b^{*} \operatorname{sqrt}\left((x-m) .^{\wedge} 2 / a^{\wedge} 2-1\right)\)
\(\mathrm{y} 5 \mathrm{r}=-\mathrm{y} 51\);
\%Cyan
\(a=.4 ; b=2\)
\(\mathrm{m}=0 ; \mathrm{j}=0\);
\(\mathrm{y} 6 \mathrm{I}=\mathrm{j}+\mathrm{b}^{\star} \operatorname{sqrt}\left((\mathrm{x}-\mathrm{m}) .^{\wedge} 2 / \mathrm{a}^{\wedge} 2-1\right)\);
\(\mathrm{y} 6 \mathrm{r}=-\mathrm{y} 6 \mathrm{l}\);
figure(2);
plot(x, y1t, 'b-', x, y1b, 'b-', x, y2t, 'g-', x, y2b, 'g-', x, y3t, 'r-', x, y3b, 'r-', x, y41, 'y-', x, y4r, 'y-', x, y51, 'k-', x, y5r, ' \(/\)
k-', \(x, y 6 r\), 'c-', \(x, y 6 I\), 'c-');
```


"the big shift"

## \%Blue

$\mathrm{a}=.6 ; \mathrm{b}=4.6$;
$m=0 ; j=1.3$;
$y 1 t=j+b^{*} \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 1 b=j-b^{*} \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right) ;$
\%Green
$\mathrm{a}=.7 ; \mathrm{b}=7.5$;
$\mathrm{m}=0 ; \mathrm{j}=.6$;
$y 2 t=j+b^{*} \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 2 b=j-b^{*} \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right) ;$
\%Red
$\mathrm{a}=.5 ; \mathrm{b}=1.7$;
$\mathrm{m}=0$; $\mathrm{j}=.7$;
$y 3 t=j+b^{*} \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 3 b=j-b^{*} \operatorname{sqrt}\left((x-m) . \wedge 2 / a^{\wedge} 2+1\right)$;
\%Yellow
$a=.1 ; b=2.5$;
$m=0 ; j=1$;
$y 4 I=j+b^{*} \operatorname{sqrt}\left((x-m) .^{\wedge} 2 / a^{\wedge} 2-1\right)$;
$\mathrm{y} 4 \mathrm{r}=-\mathrm{y} 41$;
\%Black
$\mathrm{a}=.19 ; \mathrm{b}=1.9$;
$\mathrm{m}=-.04 ; \mathrm{j}=.3$;
$\mathrm{y} 5 \mathrm{I}=\mathrm{j}+\mathrm{b}^{*}$ sqrt( $(\mathrm{x}-\mathrm{m})$. . $^{2 / a \wedge 2-1) ; ~}$
$\mathrm{y} 5 \mathrm{r}=-\mathrm{y} 51$;
\%Cyan
$a=.3 ; b=2 ;$
$\mathrm{m}=0 ; \mathrm{j}=0$;
$y 61=j+b^{*} \operatorname{sqrt}((x-m) . \wedge 2 / a \wedge 2-1) ;$
$y 6 r=-y 61$;
figure(2);
plot(x, y1t, 'b-', x, y1b, 'b-', x, y2t, 'g-', x, y2b, 'g-', $x, y 3 t, ~ ' r-', ~ x, ~ y 3 b, ~ ' r-', ~ x, ~ y 4 l, ~ ' y-', ~ x, ~ y 4 r, ~ ' y-', ~ x, ~ y 5 I, ~ ' k-', ~ x, ~ y 5 r, ~ ' ~ \swarrow ~$ k-', $x, y 6 r$, 'c-', $x, y 6 l, ~ ' c-') ;$

"the big compression"
$x=(-1.5: .01: 1.5) ;$
\%Blue
$a=.6 ; b=4.2$;
$m=0 ; j=0$;
$y 1 t=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 1 b=j-b * \operatorname{sqrt}\left((x-m) \cdot{ }^{\wedge} 2 / a^{\wedge} 2+1\right) ;$
\%Green
$a=.5 ; b=6$;
$m=0 ; j=0$;
$y 2 t=j+b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 2 b=j-b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
qRed
$a=.5 ; b=2$;
$\mathrm{m}=0 ; j=0$;
$y 3 t=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$y 3 b=j-b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
\%Yellow
$a=.1 ; b=1.5$;
$m=0 ; j=1 ;$
$y^{41}=j+b^{\star} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2-1\right) ;$
$y 4 r=-y 41$;
\%Black
$a=.18 ; b=1.3$;
$m=0 ; j=0$;
$y 51=j+b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2-1\right)$
$y 5 r=-y 51 ;$

## \%Cyan

$a=.4 ; b=2$;
$m=0 ; j=0$;
$y 61=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2-1\right) ;$
$y 6 r=-y 61$;
figure(2);
 $x, y 41, ~ ' y-', ~ x, ~ y 4 r, ~ ' y-', ~ x, ~ y 51, ~ ' k-', ~ x, ~ y 5 r, ~ ' k-', ~ x, ~ y 6 r, ~ ' c-', ~ x, ~ y 61, ~ ' c-') ; ~$

good, but needed to be off center
$\mathrm{x}=(-1.5: .01: 1.5)$;

## qBlue

$a=.6 ; b=4.6 ;$
$m=0 ; j=1.3$;
$y_{1} t=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$\mathrm{y} 1 \mathrm{~b}=j-\mathrm{b}$ *sqrt $\left((\mathrm{x}-\mathrm{m}) \cdot \wedge 2 / \mathrm{a}^{\wedge} 2+1\right) ;$
\%Green
$\mathrm{a}=.7$; $\mathrm{b}=7.5$;
$m=0 ; j=.6$;
$y 2 t=j+b * \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right) ;$
$\mathrm{y} 2 \mathrm{~b}=\mathrm{j}-\mathrm{b}$ *sqrt( $\left.(\mathrm{x}-\mathrm{m}) \cdot \wedge 2 / \mathrm{a}^{\wedge} 2+1\right)$;
\%Red
$a=.5 ; b=1.7$;
$\mathrm{m}=0 ; j=.7$
$\mathrm{y} 3 \mathrm{t}=\mathrm{j}+\mathrm{b}^{*} \operatorname{sqrt}\left((\mathrm{x}-\mathrm{m}) \cdot \wedge 2 / \mathrm{a}^{\wedge} 2+1\right)$;
$y 3 b=j-b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2+1\right)$;
\%Yellow
$\mathrm{a}=.1 ; \mathrm{b}=2.5$;
$m=0 ; j=1$;
$\mathrm{y} 41=\mathrm{j}+\mathrm{b}$ *sqrt $\left((\mathrm{x}-\mathrm{m}) \cdot{ }^{\wedge} 2 / \mathrm{a}^{\wedge} 2-1\right)$;
$\mathrm{y} 4 \mathrm{r}=-\mathrm{y} 41$;
*Black
$\mathrm{a}=.19 ; \mathrm{b}=1.9$;
$\mathrm{m}=-.03 ; j=.3$;
$\mathrm{y} 51=j+\mathrm{b}^{*} \operatorname{sqrt}\left((\mathrm{x}-\mathrm{m}) \cdot \wedge 2 / \mathrm{a}^{\wedge} 2-1\right)$;
$y 5 r=-y 51 ;$
\%Cyan
$a=.33 ; b=2$;
$\mathrm{m}=0 ; j=0$;
y61 $=j+b^{*} \operatorname{sqrt}\left((x-m) \cdot \wedge 2 / a^{\wedge} 2-1\right)$;
$y 6 r=-y 61$;
figure(2);





mapping the particle over my new grid (pedestrian clusters)


mapping the visual stimulation projected by billboards

Flux: the rate of transfer of fluid, particles, or energy across a given surface


Residual voids, population densities, and visual stimulation as documented on the site have been mapped over this hyperbolic background according to their densities, location, and distance from the vertical center line of the grid. When analyzed, the end quantitative measurement of the chart is flux (density/time). In this case, flux represents the aptitude for change in a particular area.

morphing the grids to find reaction to external forces on the system...

