
Algorithms red in tooth and claw

Evolutionary computation for design

Simon Greenwold
MIT 10.27.04



Evolutionary computation: definition

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

A family of optimization techniques that share

1) Genetic inheritance
2) A fitness metric (objective function)
3) Struggle for survival and reproduction

Nothing here indicates that it has any value for designers



The fundamentals

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

1. Population of individuals (solutions) 2. Evaluation of fitness

Repeat…

3. Selection 4. Reproduction



History

A branch of A-Life
Arises from Artificial Intelligence

Strong AI: we can model intelligence

Weak AI: we can produce the effect of intelligence

A-Life: perhaps we can’t even engineer intelligence
Project MAC

Evolutionary computation for design Simon Greenwold, MIT 10.27.04



Early experiments
Following von Neumann…

Chris Langton’s self-replicating 
cellular automata (CA) loops

Fundamentally, not evolutionary 
computation

Evolutionary computation for design Simon Greenwold, MIT 10.27.04



Stochastic optimization
John Holland (develops GA 1962-75)
hybrid of A-life and classical optimization

Simulated annealing
a gradual reduction in random energy
samples a large space
attempts to find global maxima/minima

GA is a very similar technique (search strategy)

Solution-space sampling of a simulated-annealing run

The inadequacy of hill-climbing for global maxima

Evolutionary computation for design Simon Greenwold, MIT 10.27.04



GA Specifics

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

Population
randomly initialized
genome often a bit-string, 
anything that can be combined

Decoding
genotype to phenotype

Evaluation
fitness (objective) function
single-valued!
goodness as a number?

Selection
proportional
tournament
elitism

Breeding
multiple genomes combined
(can be more than two)
mutation and crossover

Replacement
replace entire population
or just the worst
must retain diversity



Genotype vs. Phenotype

Problem specified phenotype

Encoding into genome is up to you
Must be extremely clever (most are bad)

Genome Phenome

decoding

breeding

replacement

evaluation

selection

Evolutionary computation for design Simon Greenwold, MIT 10.27.04



Crossover and Mutation

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

Parents’ genomes are combined

Some methods favor one over the other

Mutation is relatively rare

The importance of genetic diversity

Population size

Preserving “strategy”

Why not average?

Randomly chosen crossover point

Crossover

parent 1

parent 2

child 1

or child 2

parent

child

Mutation



Why operate on genomes?

Why not do combinatorial population work directly on phenotypes?

conduciveness to operations

generality of operations

nonlinearity of decoding

power of decoding

correlation of genes vs. traits

+ =

Evolutionary computation for design Simon Greenwold, MIT 10.27.04



Genesys: The John Muir Trail

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

David Jefferson, 1992

evolving ant brains to follow a trail of food
fitness is amount eaten in a certain time

in any state left, right, forward, no movement
and exit to another state
number of states is crucial

behavior expressed as Finite State Machine (FSA)

body in some color, 
head in another



Genetic Programming

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

John Koza c. 1992

Represents genomes as “programs” 
(trees of operations and values)

Can even define and call subroutines

Phenome is the production of running the 
program

Crossover is grafting of branches from one 
genome to another

Not usually any mutation

Steady-state population (no specific 
generations)

Space of exploration very broad



Compelling work: Karl Sims

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

Evolved virtual creatures, 1994
(like all great work, looks easy)

genome coded for both form and behavior
sensors and effectors (muscles)
and a neural “brain”

incredibly complicated genome
multiple nested directed graphs

careful physics simulation as environment



Compelling work: Karl Sims

ran on a massively parallel machine

selected for results of behaviors

also direct competition

Evolutionary computation for design Simon Greenwold, MIT 10.27.04



AgencyGP

Genetic programming for growing extruded 
NURBS clusters

Testa, O’Reilly, and me

Plugin to Maya (3.x at the time)

Evolutionary computation for design Simon Greenwold, MIT 10.27.04



AgencyGP

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

Agents

Fitness a weighted function of the 
evaluation of arbitrarily many “agents”
A framework…

Individuals

A “program” of transformations and 
boolean operations on NURBS curves

Colors for program or other division of 
control

Bounding box

Size by type

Number of 
shapesRotate, translate, scale, extrude, union, intersect, difference.



GenR8

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

O’Reilly & Hemberg

Evolving grammars for surfaces

A well-known decoding: L-Systems

User-defined fitness, attractors, repellers



A shared environment: Tierra

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

Tom Ray’s 1991 TIERRA Synthetic Life 
program

Organisms as strings of instructions

Executed directly in a virtual machine

To reproduce, had to reproduce 
themselves in memory

Organisms became the environment

Competition was innate to the system

No external selection mechanism 
required

Strategies developed (hosts, parasites -
biodiversity)

(1) Hosts, red, are very 
common. Parasites, yellow, 
have appeared but are still 
rare.

(2) Parasites have become 
very common. Hosts 
immune to parasites, blue, 
have appeared.

(3) Immune hosts now 
dominate memory, while 
parasites and susceptible 
hosts decline.

(4) The parasites will soon 
be driven to extinction.



Hard problems

Evolutionary computation for design Simon Greenwold, MIT 10.27.04

What makes a problem hard?

Magnitude and shape of solution space
(discontinuities, any pathology imaginable)

Genomic representation that cover the space 
exactly

Genomic surface area

The difficulty of fitness functions 
(weighted concerns, creativity?)

Where are we today?

There is no general solver



GAs vs. interactive-selection systems

Evolutionary computation for design

The limited role of optimization

The fitness problem – what are we selecting for?
(and if we know it, why don’t we just design it?)

Aesthetic criteria (exploration vs. optimization)

A different relationship to solution space

The parameters frame the solution

Direct optimization is better

Why do these capture the imagination?

Results from GenR8

Evolutionary computation for design Simon Greenwold, MIT 10.27.04


