4.401/4.464 Environmental Technologies in Buildings

Massachusetts Institute of Technology Department of Architecture Building Technology Program

1

Lighting Module

Light and Human Vision
Daylighting Design Principles
Daylight Simulations & Daylight Availability Metrics
Visual Comfort and Occupant Behavior
Electric Lighting and Controls

Weekly Reading And Tutorials

Dayligh	ting Hand	book I	
Designi		eSun	
			_

Chapter 4: The Sensor

Light and Human Vision

Left: Photo courtesy of David Lindes on Flickr. License: CC BY-NC-SA.

Center: Photo © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>. Right: Public domain image courtesy of National Eye Institute, NIH.

Human Eye

Outside view of a human eye

Ophthalmogram of a human retina.

Anatomy of the eye

The retina has three types of photoreceptors:

□ Ganglion cells

Day and Night Vision

- Photopic (Daytime Vision): The cones of the eye are of three different types representing the three primary colors, red, green and blue (>3 cd/m²).
- Scotopic (Night Vision): The rods are responsible for night and peripheral vision (< 0.001 cd/m²).
- Mesopic (Dim Light Vision): occurs when the light levels are low but one can still see color (between 0.001 and 3 cd/m²).

Visible Range

Starlight		Moonlight			Book in shade		VDT		Sky		Sunlight	
10 ⁻⁶	10 ⁻⁵	10-4	10 ⁻³	10 ⁻²	10 ⁻¹	10 ⁰	10 ¹	10 ²	10 ³	10 ⁴	10 ⁵	10 ⁶

The human eye can see across twelve orders of magnitude.
We can adapt to about 2-3 orders of magnitude at a time via the iris.
Larger ranges take time and require 'neural adaptation'.

Transition Spaces

Outside

- □ Atrium
- Circulation Area

Luminous Response Curve of the Human Eye

What is daylight?

Daylight is the visible part of the electromagnetic spectrum that lies between 380 and 780 nm.

Photometric Quantities

Characterize how a space is perceived.

Luminous Intensity [Candela]

~ 1 candela

Luminous intensity: Power emitted by a light source in a particular direction

$$1 candela = 1 \frac{lumen}{steradiant}$$

Photo courtesy of jannemei on Flickr. License: CC BY-NC-SA.

Luminous Flux/Power

[Lumen = Candela* Steradiant]

100 Watt , 1600 lumen 127 candles

13 Watt , 1600 lumen

Luminous flux: measure of the perceived power of a light source.

Left: Photo courtesy of <u>jannemei</u> on Flickr. License: CC BY-NC-SA. Center: Photo courtesy of <u>Richard Scott</u> on Flickr. License: CC BY-NC-SA. Right: Photo courtesy of <u>Jase Group LLC</u> on Flickr. License: CC BY-NC-SA.

^{™™} <u>S D</u> L A B

Example of Manufacturer Information

© Ace Hardware. All rights reserved. This content is excluded from our

Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Review Luminous Efficacy & Efficiency

Light Source	Efficacy		Efficiency
sunlight	93 lm/W		14%
daylight	120 lm/W		18%
monochromatic green light	683 lm/W		100%
100 W tungsten incandescent 18 Im/	V	2.5%	
T8 fluorescent tube with el. ballast	80-100 lm/W		12-15%
white organic LED	up to 65 -131 l	m/W*	
high pressure sodium lamp	150 lm/W		22%

* lower range at room temperature and power levels above 1 W

200yr Evolution of Luminous Efficacy

Fig. 4.9 200-year evolution of luminous efficacy for different lighting technologies⁶

Spectral Intensity of Various Light Sources

Compact fluorescent lamp

Incandescent lamp for various dimming levels

White LED

Spectral Intensity Distribution of Daylight

Luminance

[candela/m²]

19

candela/m2

Luminance: measure of the density of luminous intensity. It indicates how much luminous power reaches the eye of an observer looking at the surface from a particular viewpoint.

^{™™} <u>SD</u>LAB

Candle photos courtesy of jannemei on Flickr. License: CC BY-NC-SA.

Luminance Measurement

High Dynamic Range Photography

HDR Photography

Exterior HDRI (for representation)

Interior HDRI (for glare analysis) Sky Luminance Map (for daylight simulations)

22 Photos courtesy of Shelby Doyle. Used by permission.

Luminance Distribution

Fig. 4.15 Example analysis of a workspace with spot luminance measurements

Fig. 4.16 This HDR photograph provides a falsecolor luminance map of the same workspace

Luminance Distribution

Demo: WXFalseColor: Exposure, falsecolor, human sensitivity, 10:3:1 ratio False color representation to display a larger range.

[™] <u>SD</u>LAB

Preferred luminances in the field of view

- □ Keep luminance in the field of view within a factor of 3 / 10 within the near / far field vision.
- Rule widely used but not validated.
- Very difficult to maintain with daylight. Might not be necessary.
- ❑ Combine with an upper luminance level of 2500 to 3000 cdm⁻² due to glare

[™] <u>SD</u>LAB

25

HDR Photography vs Radiance

Courtesy of Elsevier, Inc., <u>https://www.sciencedirect.com</u>. Used with permission.

LAB

Paper: N. Jones and C F Reinhart, "Experimental validation of RADIANCE/Accelerad-based simulations as a means of image-based visual discomfort analysis," submitted to *Building and Environment.*

Illuminance

[lux = lumen/m²]

27

Illuminance is the most widely used photometric quantity to describe the light in spaces. It is defined as the total luminance flux incident on a surface and measured in lumen per unit area or lux¹²:

Illuinance = $\frac{Luminous Flux}{Area}$; Unit [Illuminance] = $\frac{lumen}{m^2} = lux$

Foot-candle = non SI unit of illuminance 1 fc = 1 lumen/ft2 = $10.764 \text{ lux}_{\text{lux}}$

Candle photos courtesy of jannemei on Flickr. License: CC BY-NC-SA.

Comparison of Illuminance Meters

Illuminance Levels

- □ Clear summer sky 150,000 lux
- □ Overcast summer sky 16,000 lux
- □ Moonlight 1 lux
- □ Daylit office or classroom lighting requirement 300 lux
- □ Open plan office lighting requirement 500 lux 800 lux
- □ Reading requirement 100 lux
- Conversation requirement 150 lux

Illuminance Distribution

© P. Zaferiou. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

© Timothy Hursley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-

Fig 4.39 Simulated visualization (left) and illuminance distribution (right) on June 21 at noon in the Crystal Bridges museum in Arkansas, USA, 2011 (architecture Moshe Safdie, Lighting Lam Partners, Simulation Kera Lagios).

Simulation courtesy of Kera Lagios. Used by permission.

Preferred Illuminance Levels

Energy saving potential through personal controls.

From the Eye to the Brain

Optical Illusions

Image courtesy of Akiyoshi Kitaoka. Used with permission.

Optical Illusions

34 Image courtesy of Akiyoshi Kitaoka. Used with permission.

information, see https://ocw.mit.edu/help/faq-fair-use/.

From the Eye to the Brain

Fig 4.23 Section of the brain

Context Light and Health

Fig 4.26 Action spectrum of ganglion cells versus a CIE standard Photopic and Scotopic Observer

Context Light and Health

Student Performance in the Classroom

Collaboration with Harvard Medical School, Division of Sleep Medicine

Preliminary Results (!)

□ ALFA features a spectral sky model, spectral opaque and glazing material descriptions, and a path-tracing like approach based on Radiance.

Questions?

4.401/4.464 Environmental Technologies in Buildings Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.