4.401/4.464 Environmental Technologies in Buildings

Christoph Reinhart 4.401 Thermal Comfort and Case Studies

Future Climate Files

Bioclimatic Design

For a thermal analysis of a building we need local hourly climate data from a weather file including direct and diffuse solar radiation, wind speed and direction, as well as temperature and relative humidity.

Historic Weather Fluctuations and Resulting Building Energy Use

See Figures 3-9 and 3-10, Drury B. Crawley, "Building Performance Simulation: A Tool for Policy Making," PhD thesis, University of Strathclyde, 2008 (PDF).

How can we consider climate change in our designs?

Future Climate Files

Left: public domain image courtesy of National Oceanic and Atmospheric Administration (NOAA)

Right: IPCC Fourth Assessment Report on Climate Change © Intergovernmental Panel on Climate Change. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Climate Change Weather File Generator

http://www.energy.soton.ac.uk/ccworldweathergen/

Generates future climate files for locations worldwide (with limitations) with a specific focus on the UK. It is based on the 'morphing' methodology.

Belcher SE, Hacker JN, Powell DS. "Constructing design weather data for future climates." *Building Services Engineering Research and Technology* 2005; 26 (1): 49-61.

, Jentsch MF, Bahaj AS, James PAB. "Climate change future proofing of buildings - Generation and assessment of building simulation weather files." *Energy and Buildings* 2008; 40 (12): 2148-2168.

Climate Change Weather File Generator

CCWorldWeatherGen climate change weather file generator V1.5 For transforming EPW weather files into climate change TMY2/EPW files. (Acknowledgements & disclaimer of warranties below) manual

Specify the HadCM3 data file p: C:\CCWorldWestherGen\HadCM3data

- Summary of combined HadCM3 A2 ensemble climate change predictions for the selected weather site

Selected scenario: A2 scenario ensemble for the 2080's

		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANN
Daily mean temperature	TEMP (°C)	4.10	4.43	4.16	4.32	4.73	4.95	5.81	5.84	5.50	5.09	4.43	3.97	4.78
Maximum temperature	TMAX (°C)	3.92	4.48	4.30	4.07	4.76	5.56	6.46	6.07	5.36	4.79	4.48	4.08	4.86
Minimum temperature	TMIN (°C)	4.39	4.56	3.83	4.42	4.77	4.62	5.52	5.88	5.68	5.27	4.30	4.02	4.77
Horizontal solar irradiation	DS₩F W/m²	-3.96	-6.05	-4.22	-0.51	11.77	17.59	14.20	10.09	11.50	6.57	-1.14	-2.35	4.46
Total cloud cover	TCLV % points	-0.25	-0.50	-0.88	-0.13	-2.00	-3.00	-5.25	-5.00	-5.63	-4.38	-0.63	-0.88	-2.38
Total precipitation rate	PREC %	13.41	22.11	24.97	28.96	14.52	6.39	12.84	24.38	-8.16	2.82	12.59	15.63	14.21
Relative humidity	RHUM % points	-2.59	-4.54	-4.91	-3.85	-5.21	-7.54	-7.09	-4.63	-4.16	-3.27	-3.17	-3.15	-4.51
Mean sea level pressure	MSLP hpa	-1.61	-1.02	-2.48	-0.52	-1.22	-1.68	-2.09	-2.54	-1.09	-0.87	-0.21	-0.95	-1.36
Wind speed"	WIND %	-1.40	-2.22	0.70	-0.58	-1.41	-2.39	-1.79	-7.25	-6.52	-5.72	-1.20	-2.52	-2.69

Please note that wind speed resides on a 96x72 grid whilst all the other data is on a 96x73 grid.

Select EPW File for Morp	hing	[©] 2020s [©] 20	150's 🖗 2080's	I	Load Scenario
urrent EP¥ baseline ¥eather file l	or morphing:	Closest four H	ladCM3	Latitude:	Longitude.
altimore Blt ¥ashnotn Intl <i>Latitud</i>	e: 39.17 N	Baltimore Blt	Washnotn 8	40.00 N 40.00 N	##### W
Longite	ode: ##### V		3	37.50 N	##### V
Elevatio	<i>an.</i> : 45 m	A2 scenario f	or the 208 🛛 🖉	37.50 N	##### V

Start Morphing Procedure

Current morphed EPW weather file:

- EPW we

Morphed EPW file for: Baltimore Blt Washingth IntL, USA HadCM3 A2 emissions senario ensemble for the 2080's

) Click	the appropriate button for EPW l TMY2 file gene	ratio
	Generate Climate Change EPW Weather File	
	Generate Climate Change TMY2 Weather File	
o creat	e a TMY2 file of the original EPW file click the bu	ttan
Gene	rate Present-Day TMY2 Weather File form FPW data	

TMY2 Into The Future

SDLAB

How large is the effect?

Harvard University – Gund Hall

DesignBuilder model

Photo © Harvard Graduate School of Design. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

Gund Hall now

Gund Hall Cooling: Measured vs. Simulations 800 700 600 500 MWh 400 300 200 100 0 Feb Aug Dec Jan Jul Sep Oct Nov Mar Apr May Jun Gund Utility Meter 2009/2010 - Year 1990 Simulation ____

33 Zone E+ model
1990 TMY2 weather data for Boston

SDLAB

Case Study I : Gund Hall now and then

□ 33 Zone E+ model

1990 TMY2 weather data for Boston

predicted 2080 weather data for the IPCCCA2 scenario (medium to high emissions scenario).

Microclimate

Local microclimate

You should also consider local microclimatic conditions:

- Local shading is considered by all major thermal simulation programs
- Description Other microclimatic effects are climate change, urban heat island, and local wind patterns.

^{™™} <u>S D</u> L A B

Climate Consultant

Boston

MONTHLY DIURNAL AVERAGES

LOCATION: Boston Logan IntL Arpt, MA, USA Latitude/Longitude: 42.37° North, 71.02° West, Time Zone from Greenwich -5 Data Source: TMY3 725090 WMO Station Number, Elevation 6 m

Boston

Boston

N C JANUARY - DECEMBER

Climate File Board Game

Thermal Comfort

How much of our time do we spend indoors? Over 90%.

Thermal Comfort - History

□ Baldwin 1898: "It is usual to maintain a room temperature of 70° F."

□ Le Corbusier: "Maintain 18° C in buildings all over the world."

❑ While temperature was early recognized to have a strong (the only) impact of thermal comfort, relative humidity was not a recognized concept. Instead, researchers used other descriptors such as stuffiness, smell, draught.

 \Box This was partly due to our inability at the time to measure CO₂ or relative humidity.

Migration and Adaptation

Top: map © National Geographic Partners, LLC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. Left: public domain photo courtesy of Library of Congress. Center: public domain photo courtesy of National Parks Service. Right: photo by instructor.

SDLAB

Thermal Sensation - Regulation

Humans and many other mammals have efficient internal temperature regulating systems that automatically maintain stable core body temperatures at about 37.0° C. Individual differences in metabolism, hormone levels, physical activity can cause a variation of 0.6° C.

Basal metabolic rate + Muscular activity + Dietary intake Vasoconstriction Postural changes Adjust clothing level

Basal metabolic rate -Muscular activity -Drink cool fluids Thermal sweating Vasodilation (red skin) Adjust clothing level

How can we adapt when we are too hot or too cold?

Define "thermal comfort"

Thermal Comfort - Definitions

Definition 1: Conditions wherein the average person does not experience the feeling of discomfort (Olgyay).

Definition 2: A condition of mind which expresses satisfaction with the thermal environment as assessed by subjective evaluation (ASHRAE 55 - 2004).

ASHRAE 7-point scale

Outdoor Thermal Comfort Study (Photo courtesy of Jianxiang Huang. Used with permission.) +3 Very Hot +2 Hot Comfort Range +1 Warm 0 Neutral -1 Cool -2 Cold -3 Very Cold

SDLAB

ASHRAE 7-point scale

Source: M Schweiker, X Fuchs, S Becker, M Shukuya, M Dovjak, M Hawighorst and J Kolarik, "Challenging the assumptions for

thermal sensation scales," *Building Research and information*, 45:5,pp. 572-589, 2016. © Schweiker et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

^{IIII} <u>SD</u>LAB

What variables are influencing thermal comfort?

Personal factors: Clothing and activity

How do we regulate our body temperature?

Comfort Range

Depends on individuals' metabolism, clothing and activity level, season, and to a smaller degree on food and drink intake, body shape, age, and gender.

Relative humidity:

30% to 65%	little effect
<30%	dry skin and mucous membranes
>65%	restricted evaporation

Air velocity:

<0.1 m/s	stuffy
0.2 to 0.5	pleasant
0.5 to 1	awareness
1 to 1.5	drafty

Metabolic Rates

The metabolic rate, or human body heat production, is often measured in the unit "Met". The metabolic rate of a relaxed seated person is 1 Met, where 1 Met = 58 W/m2.

Activity	W/m²	W*	Btu/hr	Met
Seated relaxed	58	104	356	1.0
Standing relaxed	70	126	430	1.2
Standing, light activity	93	167	571	1.6
Walking on the level, 2 km/h	110	198	675	1.9
Walking on the level, 5 km/h	200	360	1228	3.4
Sports - Running in 15 km/h	550	990	3377	9.5

Source: ASHRAE 55 - 2004 (page 15).

Metabolic rates are given in W per area of skin. A "typical" adult has an effective skin surface area of 1.8 m². => 1 person radiates about 100 W (an incandescent light bulb).

Table © ASHRAE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Clothing

TABLE B1 Clothing Insulation Values for Typical Ensembles^a

Clothing Description	Garments Included ^b	<i>I_{cl}</i> (clo)
Trousers	1) Trousers, short-sleeve shirt	0.57
	2) Trousers, long-sleeve shirt	0.61
	3) #2 plus suit jacket	0.96

Source: ASHRAE 55 - 2004 (page 15)

Thermal Comfort Index

Thermal comfort indices are assessment methods of thermal sensation and comfort. More than 100 thermal comfort indices have been developed over the last 100 years.

Actual Sensation Vote (Nikolopoulou, 2004); Adaptive Thermal Index (Humphrey, 1975); Apparent Temperature (Steadman, 1979); Discomfort Index (Thom, 1959); Effective Temperature Scale (Houghton et al.1923); ETU (Nagano& Horikoshi, 2011); ETF(Kurazumi et al., 2010); Humid Operative Temperature (Horikoshi et al., 1991); Local SET (Kohri and Mochida, 2003); New Effective Temperature ET* (Gagge at al. 1971) Outdoor Standard Effective Temperature (Spagnolo and de Dear 2003); Perceived Temperature (Tinz and Jendritzky 2003); Perceived Temperature (Staiger, et al, 2011); Physiologically Equivalent Temperature (Höppe 1999); Predicted Mean Vote, Predicted Percentage Dissatisfied (Fanger, 1972); Standard Effective Temperature (Gagge et al. 1986); Seven-Point Thermal Comfort Scale (Bedford, 1936); Temperature-Humidity Index (Clarke & Bach, 1971) UTCI (ISB, 2009); Thermal Comfort Zone (Houghton & Yagloglou, 1923) Wind Chill Index (Steadman, 1971); Wind Chill Temperature Index (OFCM, 2003);

Predicted Mean Vote

Ole Fanger wanted to predict conditions for which the largest possible percentage of a given group experiences thermal comfort.

Predicted Mean Vote

According to Fanger, requirements for steady-state thermal comfort are:

- body is in heat balance
- □ mean skin temperature and sweat rate are within limits
- no local discomfort exists

PMV is based on experiments with Danish college students exposed to steady-state conditions for 3 hours in a climate chamber.

ASHRAE Comfort Range

Source: ASHRAE 55 – 2004 (page 5). © ASHRAE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/.

□ Note, the X-axis is provided in operative instead of dry bulb temperature.

□ Figure applies for a metabolic rate of 1.0 to 1.3 met and a clothing level of 0.5 to 1.0 clo, air speed <0.2 m/s.</p>

38

ASHRAE 55

Compliance with PMV is required in air conditioned spaces.

CBE T	hermal	Comfort To	ol			ASHRAE-55	EN-15251	Compare	Ranges	Upload
Select m	ethod:	PMV met	nod	•	✓ Com	plies with ASHRAE	E Standard 55-20	13		
Air tempe	erature				PMV		-0.13			
25	°C	Use opera	ative temperat	ure	PPD		5%			
Ma		4			Sensat	on	Neutr	al		
Mean rac		ture			SET		24.5°	С		
25	- C									
Air speed	k									
0.1	鏱 m/s	Local air	speed control			Psychrometrie	c chart (air tempe	erature)	*	
Humidity					tdb 35.5	°C			/ / /	∕
50	2 %	Relative h	numidity	-	rh 40.7	%		/	/ / /	
Metabolio	c rate				Wa 14.8 twb 24.4	g w /kg da °C				- 25
1.1	🔶 met	Typing: 1	.1		tdp 19.9	°C				
Clothing	level	Typical su	ummer indoor	•	h 37.9	kJ/kg				[gw / kgda]
<u>©</u>	Cre	ate custom ensen	nble							ty Ratio
<u>~</u>	Dyna	amic predictive clo	thing							umidit
ß	L	EED documentatio	on							- 10 エ
Globe temp	SolarCal	Specify SI pressure IP	Local discomfort	? Help						- 5
					10 12	14 16 18	20 22 24	26 28 30	32 34	0 36

Dry-bulb Temperature [°C]

Mean Radiative Temperature [MRT]

Non-uniform space

The uniform surface temperature of an imaginary black enclosure in which an occupant would exchange the same amount of radiant heat as in the actual non uniform space.

Uniform space

Mean Radiative Temperature Field

The reference office is heated to 20^{\circ} C.

□ The surface of the single pane window is colder (-4° C) than the surfaces of the floor, ceiling and walls. S D L A B

Mean Radiative Temperature Distribution

□ The mean radiant temperature throughout the space depends on the exposure of a given point to the different surrounding surfaces.

Even with an ideal forced-air heating/cooling system somebody sitting near the single pane window might get cold/hot.

How large is this effect over the course of the year?

Winter/Summer Design Week

Winter design week - a week identified by the weather data translator as being the coldest of the year.

Summer design week - a week identified by the weather data translator as being the hottest of the year.

Transition period - a typical week between the heating and cooling periods.

Conditioned Office with Single Pane Window

Conditioned Office with Single Pane Window

Conditioned Office with Double Pane Window

Measuring Radiative Temperature

SDLAB

Mean Radiative Temperature Calculation

To measure the mean radiant temperature at a particular reference point, x, you can use a spot thermometer to measure the surface temperature of all surfaces "seen" from x. You also need to estimate the Form Factor (FF) of each surface with respect to x. A form factor is the fraction of the solid angle that a given surfaces takes within the point of view of a point to the full solid angle (2π) surrounding the point. The sum of all form factors is 1.

 $MRT^4 = Form_Factor_1 \times MRT_1^4 + Form_Factor_2 \times MRT_2^4 \dots$

with MRT_i = temperature of surface i in Kelvin; FF_i = form factor of surface i

For the space below all surfaces except for the screen had a temperature of 26°C. The screen had a temperature of 43°C. Assuming that the screen takes up an estimated 7% of the surrounding surfaces from the position of a person seated at the desk, the MTR (in Kelvin) becomes:

MRT⁴ = 0.93 x (273 + 26) K⁴ + 0.07 x (273 + 43) K⁴ => MRT = 300.3 K = 27.3 °C

Operative Temperature

The operative temperature approximates how one "feels" in a given thermal environment.

Operative Temperature ~ 0.5 * MRT + 0.5 * DBT

Thermal Stress

Rule of Thumb

To maintain thermal comfort the difference between the MRT and DBT in a space should be no more than 3-4 K. For specific surfaces ASHRAE 55 allows for the following asymmetries for different surfaces:

TABLE 5.2.4.1 Allowable Radiant Temperature Asymmetry									
	Radiant Temperature Asymmetry °C (°F)								
Warm Ceiling	Cool Ceiling	Warm Wall							
< 5 (9.0)	< 10 (18.0)	< 14 (25.2)	< 23 (41.4)						

Source: ASHRAE 55 – 2004 (page 7)

license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Can we do better?

Thermal Neutrality vs. PreferredThermal SensationPhoto courtesy of Pat Dyee

Photo courtesy of Pat Dye on Flickr. License CC BY-NC-SA.

Nobody on this photo is comfortable according to Thermal Comfort Indices.

Thermal neutrality is boring.

Thermal neutrality is influenced by season.

Individuals in air conditioned buildings are twice as sensitive as occupants of naturally ventilated buildings.

https://mitpress.mit.edu/books/thermal-delight-architecture

ASHRAE 55

Accepted temperature range depends on whether a space is 'conditioned' or not.

Two compliance paths:

- □ Predictive Mean Vote
- □ Adaptive Temperature

Mean Monthly Outdoor Temperature

Arithmetic average of the mean daily minimum and mean daily maximum outdoor (dry-bulb) temperatures for the month in question (ASHRAE 55).

Acceptable operative temperature in naturally conditioned spaces

Source: ASHRAE 55 - 2004 (page 10)

SDLAB

Clothing level is assumed to vary 'naturally' with season. No humidity or air speed limits. Comment: Clarified legal implications for 'naturally conditioned' spaces in the US.

58

© ASHRAE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

CBE Thermal Comfort Tool		ASHRAE-55	EN-15251	Compare	Ranges	Upload			
Select method:	X Does not comply with ASHRAE Standard 55-2013								
Air temperature 18 °C Use operative temperature	80% accept ⊊ Status	tability limits s	Opera Too w	ative temperatur arm	e: 23.3 to 30.3	°C			
Mean radiant temperature 20 ♀ °C	90% accept له Status	tability limits s	Opera Too w	ative temperatur arm	e: 24.3 to 29.3	°C			
Prevailing mean outdoor temperature		1 1	Adaptive	e chart	1 1	1			
Air speed 0.3 m/s (59 fpm)	34								
LEED documentation	30	·							
Globe tempSolarCalSpecify pressureSILocal?discomfortHelp	ວຼີ ²⁸								
	24 20 20 20 20 20 20 20 20 20 20 20 20 20								
	16 14 10 12	2 14 16 Prev	18 20 22 ailing Mean Outdo	2 24 26 por Temperature	28 30 [°C]	32			

http://comfort.cbe.berkeley.edu/

SDLAB

Critique of Thermal Comfort Models

Hypothesis has not been demonstrated

How will an average person feel? = How will a large group respond?

□ Model variation too large

- group variance = 1.0 scale units
- inter-individual variance = 1.0 scale unit
- o intra-individual variance 1.0 scale unit (season, mood, alertness)

Model weak at the extremes of comfort

Cultural differences

• Thermal neutrality in Malaysia and London varies by 3 K

'Enforcement' of ASHRAE 55

□ Declare exceedances such as 1% of time, 29 hours per year....

□ Difficult to meet with large architectural glazings.

□ Extra Credit under LEED.

Lessons for design

- Provide building occupants with thermal control over their environment (thermostats, fans, blinds, operable windows...).
- □ Allow occupants to dress as desired.

4.401/4.464 Environmental Technologies in Buildings Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.