S.I. Units

Seven basic units

- meter
- kilogram
- second
- ampere
- Kelvin
- mole
- candela

Derived units

- radian
- steradian
- Newton
- Pascal
- Joule
- Watt
- Iumen
- Iux

Heat transfer modes due to °T difference

- Conduction
 - conductivity λ [W/(m K)]
 - U-value [W/(m²K)]
 - resistance R [m²K/W]
 - surface film:

$$\label{eq:aext} \begin{split} \alpha_{ext} &\approx 23 \; W/\,m^2 K \text{ i.e. } R_{se} \approx 0,04 \; m^2 K/W \\ \alpha_{int} &\approx 8 \; W/\,m^2 K \text{ i.e. } R_{si} \approx 0,13 \; m^2 K/W \end{split}$$

Image by MIT OCW.

Heat transfer modes due to °T difference

- Conduction and insulation laws
 - Heat flow = surface x U x ΔT i.e. = surface x (1/Rtot) x ΔT
 - Rtot = $1/\alpha_{ext} + \Sigma Ri + 1/\alpha_{int}$ if resistance in series
 - $A_{tot} \times R_{tot}^{-1} = \Sigma (A_{el1} \times R_{el1}^{-1})$ if in parallel

Images by MIT OCW.

Heat transfer modes due to °T difference

Conduction and insulation laws: resistances in series

Heat transfer modes due to °T difference

Conduction and insulation laws: resistances in series and parallel

Image by MIT OCW.

60 m³ room surrounded by other rooms at equal temperature (20°C) Façade in contact with exterior (0°C): surface 10 m² including window 3 m² Wall = brick (37cm, R = 0.8 m²K/W) + mineral wool (4 cm, λ = 0.04 W/m²K) + pine paneling (20 cm, R = 0.2 m²K/W) U_{window} = 2 W/m²K

Heat transfer modes due to °T difference

- Conduction
- Convection
 - Convection coefficient $h_c [W/(m^2K)]$

Heat transfer modes due to °T difference

- Conduction
- Convection
- Radiation
 - temperature $\widetilde{}$ wavelength (radiated power per m² $\widetilde{}$ σ T⁴)

Heat transfer modes due to °T difference

- Conduction
- Convection
- Radiation
 - temperature ~ wavelength

	Solar Radiation		Terrestrial Radiation	
	Absorp. Emitt.	Reflect.	Absorp. Emitt.	Reflect.
Bright aluminum	0.05	0.95	0.05	0.95
Galvanized steel	0.25	0.75	0.25	0.75
White paint	0.20	0.80	0.90	0.10
Fresh whitewash	0.12	0.88	0.90	0.10
Lt. green paint	0.40	0.60	0.90	0.10
Dk. green paint	0.70	0.30	0.90	0.10
Black paint	0.85	0.15	0.90	0.10
Concrete	0.60	0.40	0.90	0.10

Solar radiation

- Heat transfer modes due to °T difference for windows
 - Same law for heat loss (U value), impact $\propto \Delta T$ (+ air infiltration)
- Additional heat gain component: solar gains
 - SHGC or g-value (-) through transparent materials: $\tau_{sol \ dir}$ + q (different from luminous τ_{vis}) τ_{vis}
 - Incident solar q_s Incident angle *i* Reflected radiation $\rho_E q_s$ Directly transmitted radiation $\tau_E q_s$
- Global transmitted $g q_s$ radiation

Solar radiation

Additional heat gain component: solar gains

SHGC or g-value (-) through transparent materials

Solar radiation

Additional heat gain component: solar gains

- SHGC or g-value (-) through transparent materials
- Sol-air temperature concept for opaque materials

$G x \alpha = h x (Ts - To)$

Heat Flow

Reading assignment from Textbook:

"Introduction to Architectural Science" by Szokolay: § 1.1.1 1.1.2 + § 1.4.1

Additional readings relevant to lecture topics:

- "How Buildings Work" by Allen: pp. 47 51 in Chap 8
- "Heating Cooling Lighting" by Lechner: Chap 3
- Information about units: <u>http://physics.nist.gov/cuu/Units/</u>