Analysis of Historic Structures

Lecture 2: Intro to Masonry Structure

Review of Last Meeting

• Principles of historic structure – EQUILIBRIUM

- Lower bound and upper bound theorems
- Possible research topics

Lower Bound Theorem

Upper Bound Theorem

Theorems of Limit Analysis

- 1. Lower Bound: If you can demonstrate at least one possible equilibrium state, then the structure can also find at least one possible stable state
- 2. Upper Bound: When the load path can no longer be contained within the structure, and it is the unique and largest possible load, then it is the collapse load

Hooke's "2nd" Law (1675)

"ut pendet continuum flexile, sic stabit contiguum rigidum inversum"

As hangs the flexible line, so but inverted will stand the rigid arch.

Compression vs. Tension

Equilibrium at a Point

$\Sigma F = 0$ (sum of forces is zero)

Structural Equations

Only three types of equations:

- 1) Equilibrium
- 2) Material properties (elasticity, etc)
- 3) Compatibility (geometry)

We will focus on equilibrium equations because they are the most important.

Graphic Statics

Applet by Simon Greenwold

Hooke's Hanging Chain

Design of Masonry

• Main principle: must be kept in compression

• Also applies to cast iron, *un*reinforced concrete, and other "brittle" materials

3D Vaults: "Slice" into arches

Structural Analysis of Masonry

- <u>The Stone Skeleton</u> by Jacques Heyman
- Three main assumptions:
 - No tensile strength
 - Infinite compressive strength (rigid)
 - Sliding does not occur

Arch on Spreading Supports

Range of Arch Thrust

Internal thrust lines due to self weight of arch

Range of Arch Thrust

Range of Arch Thrust

Model Arch Experiment

Model Arch at Collapse State

Understanding cracks in masonry

- 1. Why do cracks occur?
- 2. What do they tell us?

3. Are they a cause for concern?

Understanding cracks in masonry

- 1. Why do cracks occur? -Small movements of supports
- 2. What do they tell us? -Where forces are NOT acting
- 3. Are they a cause for concern? -Usually not, but they can be

Understanding of Collapse

Causes of collapse:

1. Displacements

-Foundation movements, mortar "creep" over time

2. Overloading (truck on a bridge) -Water on vaults, collapsing roof on vault

- 3. Accelerations
 - -Vibrations, earthquakes

Design and Analysis of Unreinforced Masonry

- Stability rather than failure of the material is the dominant concern
- Collapse occurs when the load path can no longer be contained within the masonry

Model Arch at Collapse State

Single Span Stone Arch

Single Span Arch

Single Span Arch

Single Span Arch

Double Span Stone Arch

•This makes sense for bridges, but buildings don't usually have trucks driving on top of the vaults

•Deformation over time can cause collapse in buildings

Conclusions

- Unreinforced masonry structures have very low stress levels: stability, not strength, governs the safety
- Determine collapse states based on thrust line analysis using graphic statics
- Equilibrium equations are most important when analyzing historical structures