
Reciprocal Space

The reflection h, k, l is generated by diffraction of the X-ray beam at the Bragg 
plane set h, k, l, which intersects the three edges of the unit cell at 1/h, 1/k and 1/l.
Sets of planes in real space (with spacing d) correspond to points in reciprocal 
space (distance d* from the origin). The vector d* is perpendicular to the Bragg 
planes and has the length |d*| = 2sinθ/λ.
A reflection is visible when the corresponding set of Bragg planes is in reflex 
position, that is when Bragg’s law is fulfilled. In an alternative description: 
a reflection is visible when the corresponding scattering vector s = d* intersects 
with the Ewald sphere. 
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Reciprocal Space

The reflections form a lattice in reciprocal space. Reciprocal unit cell: a*, b*, c*
The dimensions and angles of the reciprocal cell are inversely proportional to the 
real space cell: if the unit cell doubles, the space between the X-ray reflections 
will be reduced by factor two.
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Reciprocal Space

For orthorhombic tetragonal and cubic unit cells:
a* = 1/a
b* = 1/b
c* = 1/c
α* = β* = γ* = α = β = γ = 90°

Triclinic more complicated:
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1/V = V* = a*b*c* [ 1 – cos2α* – cos2β* – cos2γ* + 2cosα*cosβ*cosγ* ]½

a = b*c*sinα* / V*    and    cosα = ( cosβ*cosγ* – cosα* ) / ( sinβ*sinγ* )

Same thing for b, c, cosβ, cosγ and for a*, cosα* etc.

Courtesy of George M. Sheldrick. Used with permission.



The Reciprocal Lattice: Ewald Construction
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Intensities of the Reflections

With the help of Braggs law and the Ewald construction, we can 
calculate the place of a reflection on the detector, provided we know 
the unit cell dimensions. Indeed, the position of a spot is determined 
alone by the metric symmetry of the unit cell. The intensity of a spot, 
however, depends on the contents of the unit cell (and, of course, on 
exposure time, crystal size, etc.). 

The intensity of a reflection depends, among other things, on the 
population of the corresponding set of Bragg planes with atoms. If 
there are many atoms on a plane, the corresponding reflection is
strong, if the plane is empty, the reflection is weak or absent.

Other factors are the thermal motion of the atoms and the atomic
radius.



Atomic Form Factors
X-rays are scattered by the electrons of an atom, hence the point 
atom approximation does not hold too well. Ergo: Bragg planes are 
not mathematical planes but have a fuzzy thickness, which means 
there is a path difference occurring within each individual Bragg plane.

Displacement of the place of diffraction from the ideal position of δ
leads to a path difference of δ·2π/d. This has a weakening effect on 
the intensity of the corresponding reflection. This effect is a function of 
the distance d between the Bragg planes: it becomes stronger with 
smaller distances (i.e. at higher resolution).
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Atomic Form Factors
In a first approximation the atomic scattering factor is dependent on 
the atom number (number of electrons). With increasing resolution 
(that is decreasing Bragg plane distance, equivalent to higher 
scattering angles 2Θ) the scattering factor becomes smaller. 
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Atomic Displacement Factors

Atoms not only have a radius, they also move. With the displacement 
of an atom from its ideal position on the Bragg plane, an additional 
path difference is added. 

The same principle as with the atomic form factors applies (stronger 
weakening at high scattering angles), but this effect is stronger when 
the thermal motion is higher.
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Atomic Displacement Factors

Atoms not only have a radius, they also move. With the displacement 
of an atom from its ideal position on the Bragg plane, an additional 
path difference is added. 

The same principle as with the atomic form factors applies (stronger 
weakening at high scattering angles), but this effect is stronger when 
the thermal motion is higher.
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f’: atomic scattering factor;  f: atomic form factor; 
u: mean vibration amplitude; d: Bragg plane spacing

U = u2 is the atomic displacement factor or temperature factor.



Atomic Displacement Factors

and: U = u2. Thus:We know: d = 1/d*= 1/(2sinθ/λ)
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Substitue: B = 8π2U:
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f’: atomic scattering factor;  f: atomic form factor; u: mean vibration amplitude; 
U: temperature factor; d: Bragg plane spacing, d* scattering vector; B: Debye-Weller Factor.



Structure Factors

So far we were talking about single atoms at 0,0,0 in the unit cell. 

Lets assume two identical atoms: atom 1 is at 0,0,0 and atom 2 is at x2, y2, z2. 

Contribution of the blue atoms to the 1 1 0 reflection is same as that of 
the red atoms, however with a phase shift.
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Structure Factors
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This makes the structure factor a complex number:
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Not the same i !



Structure Factors

( )iiicibiaii lzkyhx ++=∆Φ+∆Φ+∆Φ=Φ π2)()()(

This makes the structure factor a complex number:

[ ] ( )iiiiii ififF Φ+Φ=Φ⋅= sincosexp

Every atom i in the unit cell contributes to every structure factor F(hkl)
(that is reflection) according to its position in the cell and its chemical 
nature (different values for fi !):
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Structure Factors
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Structure Factors
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The electron density at every given place in the unit cell (real space) can be 
calculated from the equation above. 

Note that xi, yi, zi in the structure factor equation refer to atomic coordinates, 
while x, y, z in the electron density equation refer to arbitrary places 
anywhere in the unit cell. Of course, the electron density at the place of an 
atom is supposed to be much higher than the electron density at a place 
where there is “nothing”.



Electron Density
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It is sufficient to calculate the electron density at 
a number of grid points within the unit cell and 
extrapolate between the points.
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Courtesy of George M. Sheldrick. Used with permission.



Resolution

The maximum resolution d can be calculated from the Bragg equation:

d = λ / 2 sin(θmax)
This d corresponds approximately to the distance 
between two atoms (or more generally points in 
space), which can still be resolved from one 
another in an electron density map calculated from 
data at that particular resolution.

For centrosymmetric structures one would expect 
ca. 80/d3 independent reflections per non-hydrogen 
atom. For non-centrosymmetric structures only half 
that number (assuming Friedel’s law is true). That 
means, for a protein structure at 1.5 Å resolution 
we have ca. 12 reflections per atom. At 2.5 Å only 
ca. 2.6 reflections per atom. There are many 
protein structures at 3 Å (1.5 spots per atom) and 
worse…

~ d
Courtesy of George M. Sheldrick.

Used with permission.



Resolution
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Resolution
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2.5 Å 4.0 Å

Electron density contour plots of the same molecule at different resolutions.
Courtesy of George M. Sheldrick. Used with permission.



Calculating Electron Density
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To make this equation work we need the volume of the unit cell (easy), a 
dataset with the intensities for h, k and l (also easy) and the phase of every 
structure factor (not quite so easy).

We can measure the intensities and determine the unit cell from the 
locations of the reflections, but it is very difficult to actually measure the 
relative phase of the reflections. This is known as the “crystallographic 
phase problem”.



MIT OpenCourseWare 
http://ocw.mit.edu 

5.069 Crystal Structure Analysis
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



