
Symmetry in Reciprocal Space

The diffraction pattern is always centrosymmetric (at least in good 
approximation). Friedel’s law: Ihkl = I-h-k-l.

Fourfold symmetry in the diffraction pattern corresponds to a fourfold axis in 
the space group (4, 4, 41, 42 or 43), threefold to a threefold, etc.

If you take away the translational part of the space group symmetry and add 
an inversion center, you end up with the Laue group. The Laue group 
describes the symmetry of the diffraction pattern. The Laue symmetry can 
be lower than the metric symmetry of the unit cell, but never higher.

That means: A monoclinic crystal with β = 90° is still monoclinic. The 
diffraction pattern from such a crystal will have monoclinic symmetry, even 
though the metric symmetry of the unit cell looks orthorhombic.

There are 11 Laue groups: 
-1,   2/m,   mmm,   4/m,   4/mmm,   -3,   -3/m,   6/m,   6/mmm,   m3,   m3m
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Space Group Determination

The first step in the determination of a crystal structure is the determination 
of the unit cell from the diffraction pattern.

Second step: Space group determination.

From the symmetry of the diffraction pattern, we can determine the Laue
group, which narrows down the choice quite considerably. Usually the Laue
group and the metric symmetry of the unit cell match.

The <| E2-1 |> statistics, can give us an idea, whether the space group is 
centrosymmetric or acentric. Even thought the diffraction pattern is always 
centrosymmetric, the intensity distribution across the reciprocal space is 
much more even for a centrosymmetric space group.

From systematic absences, we can determine the lattice type as well as 
screw axes and glide planes.

This is usually enough to narrow down the choice to a very short list.



E2-1 Statistics

We measure intensities I
I F2 F: structure factors

Normalized structure factors E:
E2 = F2/<F2> <F2>: mean value for reflections at same resolution

<E2> = 1

< | E2-1 | >  = 0.736 for non-centrosymmetric structures
0.968 for centrosymmetric structures

Heavy atoms on special positions and twinning tend to lower this value. 
Pseudo translational symmetry tend to increase this value.



E2-1 Statistics
< | E2-1 | >  = 0.736 for non-centrosymmetric structures

0.968 for centrosymmetric structures

<|E2–1|> = 0.968 <|E2–1|> = 0.736

2kl projection of the reflections of a 
structure in the space group P-1.

2kl projection of the reflections of a 
structure in the space group P1.

Courtesy of George M. Sheldrick. Used with permission.



Systematic Absences

Lattice centering and symmetry elements with translation (glide planes and 
screw axes) cause certain reflections to have zero intensity in the diffraction 
pattern. If, e.g., all reflections 0, k, 0 with odd values for k are absent, we 
know that we have a 21 axis along b.
Other example: if all reflections h, 0, l with odd values for l are absent, we 
have a c glide plane perpendicular to b.

How come?



Systematic Absences

Monoclinic cell, projection along b with c glide plane (e.g. Pc).

b

(x, ½-y, ½+z)

c’

a
In this two 2D projection the structure is 
repeated at c/2. Thus, the unit cell seems
to be half the size: c’ = c/2 in this projection. (x, y, z)

This doubles the reciprocal cell 
accordingly: c*’ = 2c*. Therefore, the 
reflections corresponding to this 
projection (h, 0, l) will be according to the 
larger reciprocal cell.

c

That means h, 0, l reflections with l ≠ 2n are not observed.



Systematic Absences

Lattice centering

R (rev.)h-k+k = 3n

R (obv.)-h+k+l = 3n

Bh+l = 2n

Ak+l = 2n

Ch+k = 2n

Ih+k+l = 2n
Pnonehkl

Symmetry
element

Conditions for 
reflections

Reflections
affected



Systematic Absences

Glide Planes

n ∟ ch+k = 2n

b ∟ ck = 2n
a ∟ ch = 2nhk0

n ∟ bh+l = 2n
c ∟ bl = 2nh0l

n ∟ ak+l = 2n

c ∟ al = 2n
b ∟ ak = 2n0kl

Symmetry
element

Conditions for 
reflections

Reflections
affected



Systematic Absences

Screw Axes

61, 65 ॥ cl = 6n

41, 43 ॥ cl = 4n

31, 32 ,62, 64 ॥ cl = 3n
21, 42 ,63 ॥ cl = 2n00l

41, 43 ॥ bk = 4n
21 ॥ Bk = 2n0k0

41, 43 ॥ ah = 4n
21 ॥ ah = 2nh00

Symmetry
element

Conditions for 
reflections

Reflections
affected



Frequently Occurring Space Groups

Space group frequency in the Cambridge Structure Database (1990):
P21/c 39%  
P-1 16% 
P212121 12% 
C2/c 7%
Pbca 5%
Sum: 79%

Space group frequency in the Protein Data Bank (PDB):
P212121 24%
P3121 & P3221 15%
P21 14%
P41212 & P43212    8%
C2 6%
Sum: 67%



The Triclinic, Monoclinic and Orthorhombic Space Groups

Crystal Laue Point Space
system group group group

Triclinic                   -1           1          P1

-1          P1

Monoclinic              2/m 2           P2, P21, C2

2/m P2/m, P21/m, C2/m, P2/c, P21/c, C2/c

Orthorhombic       mmm 222        P222, P2221, P21212, P212121, C222, C2221, 
I222, I212121, F222

mm2      Pmm2, Pmc21, Pcc2, Pma2, Pca21, Pnc2,
Pmn21, Pba2, Pna21, Pnn2, Cmm2, Cmc21,
Ccc2, Amm2, Abm2, Ama2, Aba2, Imm2,
Iba2, Ima2, Fmm2, Fdd2

mmm Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna,
Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm,
Pmmn, Pbcn, Pbca, Pnma, Cmcm, Cmca,
Cmmm, Cccm, Cmma, Ccca, Immm, Ibam,
Ibca, Imma, Fmmm, Fddd

Underlined: unambiguously 
determinable from 
systematic absences. 
Red: chiral
Blue non-centrosymmetric
Black: centrosymmetric

m Pm, Pc, Cm, Cc



Crystallographic Directions

Triclinic: No unique directions, only two space groups, P1 and P-1

Monoclinic: b is unique. E.g. P21/c

Orthorhombic: no unique directions. E.g. P212121

Along unique axis b Perpendicular to b

Along / perpendicular a

Along / perpendicular b

Along / perpendicular c



Crystallographic Directions: Tetragonal Space Groups
There are two tetragonal Laue groups, P4/m and P4/mmm. The unique 
axis is always c (that’s where the 4-fold is). Space group symbols:

Laue group   4/m:              P4        I41/a

unique axis       perpendicular to unique axis c

along  /  perpendicular a and b

Laue group 4/mmm:          P43212            P42mc P421c

perpendicular to c and 45º to a and b

I41/amd

perpendicular to unique axis c

Courtesy of George M. Sheldrick. Used with permission.



The Tetragonal Space Groups

Underlined: unambiguously determinable from systematic absences. 
Red: chiral Blue non-centrosymmetric Black: centrosymmetric

Crystal               Laue Point       Space
system               group      group group

Tetragonal           4/m 4 P4, P41, P42, P43, I4, I41

4          P4, I4

4/m P4/m, P42/m, P4/n, P42/n, I4/m, I41/a

Tetragonal       4/mmm 422       P422, P4212, P4122, P41212, P4222, P42212, 
P4322, P43212, I422, I4122

4mm P4mm, P4bm, P42cm, P42nm, P4cc, P4nc,
P42mc, P42bc, I4mm, I4cm, I41md, I41cd

4m P42m, P42c, P421m, P4m2, P4c2, P421c, 
P4b2, P4n2, I4m2, I4c2, I42m, I42d

4/mmm P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm,
P4/mnc, P4/nmm, P4/ncc, P42/mmc,
P42/mcm, P42/nbc, P42/nnm, P42/mbc, 
P42/mnm, P42/nmc, P42/ncm, I4/mmm, 
I4/mcm, I41/amd, I41/acd

Courtesy of George M. Sheldrick.
Used with permission.



The Patterson Function

We measure intensities I. After applying several corrections, they translate 
into squared structure factors also known as structure factor amplitudes F2.

intensities I:
I F2 F: structure factors

The Fourier transform of the structure factors (with phases) is the electron 
density function. The Fourier transform of the structure factor amplitudes (as 
measure, without the phases) is the Patterson function. The unit cell of the 
Patterson map is the same as that of the crystal structure.

The Patterson function has some very interesting features:
It consists of peaks, that have coordinates (u, v, w) and an intensity
The distance of each peak from the origin corresponds to an interatomic 
distance in real space.
The height of the peaks is proportional the involved electrons and 
proportional the multiplicity of the corresponding vector in real space.

These features make it possible to use the Patterson map to solve the 
phase problem



The Patterson Function

That means, a peak u, v, w in the Patterson map indicates that atoms exist in 
the unit cell at x1, y1, z1 and x2, y2, z2 such that
u = x1 – x2
v = y1 – y2
w = z1 – z2

Thus, for N atoms in a unit cell, the Patterson map will contain N peaks. 
N out of these N2 peaks will be of zero length from each atom to itself. All 
these zero vectors will fall on top of one another in the origin of the 
Patterson map, which generates a very high zero-peak. 

Taking this into account, the Patterson map contains N2 – N + 1 theoretically 
distinguishable peaks.

In real life many of those peaks, which are relatively broad, will overlap and 
be, in fact, not distinguishable from some neighbor peaks. Usually, the 
strongest peaks, corresponding to vectors between heavy atoms, are well 
resolved and usable.

2



The Patterson Function
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As mentioned the relative height of a Patterson peak is proportional the 
atom number of the two atoms involved and also proportional the multiplicity 
of the corresponding distance:

ji ZZmH ⋅⋅∝

∑= 2
000 iThe origin peak (its height is                      ) is usually arbitrarily scaled to ZH

999. That means the height of the other peaks is calculated to

The sum is over all atoms in the unit cell.



One Heavy Atom in  P-1
For every atom at x, y, z there is a symmetry equivalen atom at –x, –y, –z and
hence a Patterson peak at 2x, 2y, 2z. 

The compound C32H24AuF5P2 crystallizes in P-1 with two molecules per unit 
cell (that makes one per asymmetric unit). The two gold atoms are related by 
the inversion center. Besides the peak on the origin (height 999) there is a 
peak with height 374 at u = 0.318 = 2x, v = 0.471 = 2y, w = 0.532 = 2z, which is 
much higher than all the other peaks (≤145). Its height is consistent with the 
calculated value for a Au-Au vecort (377).

To calculate the positions x, y, z of the gold atom in the unit cell, we can divide 
each of the Patterson coordinates by 2. However, we also need to take into 
account the fact that there is always a peak at u+1, v+1 and w+1
(corresponding to next unit cell in the crystal)! Thus:

x = 0.318/2 = 0.159 or 1.318/2 = 0.659
y = 0.471/2 = 0.236 or 1.471/2 = 0.736
z = 0.532/2 = 0.266 or 1.532/2 = 0.766

Those eight truley equivalent solutions correspond to the eight possible 
positions of the inversion center in the space grup P-1.



Two Independent Heavy Atoms in  P-1
The compound [C24H20S4Ag]+ [AsF6]- crystallizes in P-1 with a unit cell volume 
of 1407 Å3. This corresponds to two formula units per unit cell (one per 
asymmetric unit). We have two heavy atoms per formula unit (As and Ag), 
corresponding to the coordinates x1, y1, z1 and x2, y2, z2. Their symmetry 
equivalents as generated by the inversion center in P-1 are at -x1, -y1, -z1 and 
at -x2, -y2, -z2. Lets generate all possible difference vectors between those four 
atoms (4 X 4 table).

0, 0, 02x2, 2y2, 2z2x2-x1, y2-y1, z2-z1x1+x2, y1+y2, z1+z2-x2, -y2, -z2

-2x2, -2y2, -2z20, 0, 0-x1-x2, -y1-y2, -z1-z2x1-x2, y1-y2, z1-z2x2, y2, z2

x1-x2, y1-y2, z1-z2x1+x2, y1+y2, z1+z20, 0, 02x1, 2y1, 2z1-x1, -y1, -z1

-x1-x2, -y1-y2, -z1-z2x2-x1, y2-y1, z2-z1-2x1, -2y1, -2z10, 0, 0x1, y1, z1

-x2, -y2, -z2x2, y2, z2-x1, -y1 , -z1x1, y1, z1

The mixed peaks have m=2, the zero peaks have m=4.

Courtesy of George M. Sheldrick. Used with permission.



Two Independent Heavy Atoms in  P-1
[C24H20S4Ag]+ [AsF6]- in P-1 with two formula units per unit cell. As and Ag at 
x1, y1, z1 and x2, y2, z2 as well as -x1, -y1, -z1 and -x2, -y2, -z2. Difference vectors  
in 4 X 4 table.

0, 0, 02x2, 2y2, 2z2x2-x1, y2-y1, z2-z1x1+x2, y1+y2, z1+z2-x2, -y2, -z2

-2x2, -2y2, -2z20, 0, 0-x1-x2, -y1-y2, -z1-z2x1-x2, y1-y2, z1-z2x2, y2, z2

x1-x2, y1-y2, z1-z2x1+x2, y1+y2, z1+z20, 0, 02x1, 2y1, 2z1-x1, -y1, -z1

-x1-x2, -y1-y2, -z1-z2x2-x1, y2-y1, z2-z1-2x1, -2y1, -2z10, 0, 0x1, y1, z1

-x2, -y2, -z2x2, y2, z2-x1, -y1 , -z1x1, y1, z1

The mixed peaks have m=2, the zero peaks have m=4.

Calculating the peak heights:  Z(Ag) = 47,  Z(As) = 33, ∑ Z2 = 11384.   
With H = 999 m Zi Zj / ∑ Z2 : 

Ag—As   m = 2   height = 272;  
Ag—Ag  m = 1   height = 194; 
As—As   m = 1   height =   96.

Courtesy of George M. Sheldrick. Used with permission.



Two Independent Heavy Atoms in  P-1
Ag—As: height 272; Ag—Ag: height 194; As—As: height 96

One consistent solution is:

Ag@   x = 0.080,   y = 0.143,   z = 0.149
As@   x = 0.682,   y = 0.039,   z = 0.820

There are 8 equivalent solutions for the first atom (Ag); you can divide one 
of the 2x, 2y, 2z peaks by 2. The second atom (As) needs to be consistent 
with the first one. You can subtract the coordinates of the first atom from one 
of the cross peaks. Always check whether your solution explains all peaks!

# u v w height explanation

1 0 0 0 999 Origin
2 0.765    0.187    0.974 310 x(Ag)+x(As)
3 0.392    0.099    0.325       301           x(Ag)–x(As)
4 0.159    0.285    0.298         250           2x(Ag)
· · · · · · · · · · · ·
· · · · · · · · · · · ·
14 0.364    0.077    0.639         102           2x(As)

Courtesy of George M. Sheldrick. Used with permission.



Two Independent Heavy Atoms in  P21

Two heavy atoms, corresponding to the coordinates x1, y1, z1 and x2, y2, z2. 
Their symmetry equivalents as generated by the 21 axis are at -x1, ½+y1, -z1
and at -x2, ½+y2, -z2. The corresponding 4 X 4 table:

0, 0, 0-x1+x2, y1-y2, -z1+z22x2, ½, 2z2x1+x2, ½+y1-y2, z1+z2-x2, ½+y2, -z2

x1-x2, -y1+y2, z1-z20, 0, 0x1+x2, ½-y1+y2, z1+z22x1, ½, 2z1-x1, ½+y1, -z1

-2x2, ½, -2z2-x1-x2, ½+y1-y2, -z1-z20, 0, 0x1-x2, y1-y2, z1-z2x2, y2, z2

-x1-x2, ½-y1+y2, -z1-z2-2x1, ½, -2z1-x1+x2, -y1+y2, -z1+z20, 0, 0x1, y1, z1

-x2, ½+y2, -z2-x1, ½+y1, -z1x2, y2, z2x1, y1, z1

+½ and -½ are equivalent!

0      0      0       m = 4 origin

±{ 2x1 , ½ , 2z1 } m = 1 Harker-section
±{ 2x2 , ½ , 2z2 } m = 1 at y = ½

±{ x1–x2, y1–y2, z1–z2 } m = 1
±{ x1–x2, –y1+y2, z1–z2 }   m = 1 cross vectors
±{ x1+x2, ½+y1–y2, z1+z2 } m = 1
±{ x1+x2, ½–y1+y2, z1+z2 }  m = 1



Symmetry of the Patterson Function

For every vector i → j  there is always a vector j → i. Thus the Patterson is 
always centrosymmetric.

In general, the symmetry of the Patterson is determined by the symmetry of 
the diffraction pattern (also centrosymmetric). Glide planes and screw axes of 
the space groups correspond to mirror planes and normal rotation axes in 
reciprocal space. The Patterson has the same symmery as the Laue group.



Harker Sections

Space group symmetry leads to accumulation of Patterson peaks in
certain sections (planes or lines). E.g.

P21: atoms at  x, y, z and –x, ½+y, –z. Eigenvectors at 2x, ½, 2z; 
Harker section at v = ½. 

Harker section at v = 0. 

Pm: atoms at x, y, z and  x, –y, z. Eigenvectors at  0, 2y, 0;
Harker section at u = 0,  w = 0. 

Space groups P2 und Pm both have the same systematic absences 
(none), but they have different Harker sections.

P2: atoms at  x, y, z and –x, y, –z. Eigenvectors at  2x, 0, 2z;



Problems of the Patterson Method

Frequently localizing a single heavy atom in a structure is enough to find all 
other atoms by means of iterative difference Fourier syntesis with amplitudes
|Fo–Fc| and phases φc.

Problems arise in non-centrosymmetric space groups when the heavy atom 
substructure is centrosymmetric (e.g. only one heavy atom). In this case, all 
φc-values derived from the heavy atom positions are 0º or 180º and the 
calculated electron density is centrosymmetric, i.e. it shows a double-immage. 

Another problem is the atom-type assgnement: Electron density and Patterson 
peak heights are proportionel to atomic number, however only roughly and 
isoelectroic species are notoriously difficult to distinguish. This is  problem 
also with diret methods and sometimes even during structure refinement.



Direct Methods

Direct methods determine the phases directly from the diffraction pattern 
without any knowledge about the nature of the sample. 

Several statistical equations relate the phase of a reflection to its intensity 
and the intensity and phase of other reflections in the dataset. This can be 
done with a certain probability. Many probability relations together with 
fast computers make it possible to determine the phases of many 
measured reflections with some accuracy.

Direct methods usually do not use structure factors but operate in E-space 
(remember the normalized structure factors from the E2-1 statistics?). The 
advantage is, that the intensity of a normalized structure factor does not 
decline with the resolution; and direct methods assume atoms to be point-
scatterers anyway.

Direct methods are used predominantly as “black-box” methods and we 
don’t really have the time to change that here. 
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