
MIT OpenCourseWare 
http://ocw.mit.edu 

5.111 Principles of Chemical Science, Fall 2008 

Please use the following citation format: 

Catherine Drennan and Elizabeth Vogel Taylor, 5.111 Principles of 
Chemical Science, Fall 2008. (Massachusetts Institute of Technology: 
MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). 
License: Creative Commons Attribution-Noncommercial-Share Alike. 

Note: Please use the actual date you accessed this material in your citation. 

For more information about citing these materials or our Terms of Use, visit: 
http://ocw.mit.edu/terms 

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms


MIT OpenCourseWare 
http://ocw.mit.edu 

5.111 Principles of Chemical Science, Fall 2008 
Transcript – Lecture 6 

The following content is provided under a Creative Commons license. Your support 
will help MIT OpenCourseWare continue to offer high quality educational resources 
for free. To make a donation or view additional materials from hundreds of MIT 
courses, visit MIT OpenCourseWare at ocw.mit.edu. 

PROFESSOR: All right. As everyone finishes getting settled in, why don't you take 10 
more seconds on the clicker question here, and let's see how you did on that this, 
this is very similar to the clicker question that we had on Friday. OK, so let's get 
started here. It looks like we are doing a lot better. We now have 77% getting the 
correct answer, we only had about 30-something percent on Friday for a very similar 
question. So if you're not in this 77%, let's quickly go over why, in fact, this is the 
correct answer, . 9 times 10 to the negative 18 joules. 

So I'm using the same kind of tricky language that we'd used before, not to trick 
you, but so that you're not tricked in the future. So if we're talking about the fourth 
excited state, and we talk instead about principle quantum numbers, what principle 
quantum number corresponds to the fourth excited state of a hydrogen atom. 

STUDENT: Five. 

PROFESSOR: Five. OK. So, hopefully that cleared up for some of you why you got 
the wrong answer. So we know that we're in the n equals 5 state, so we can find 
what the binding energy is here. The ionization energy, of course, is just the 
negative of the binding energy. We know that binding energy is always negative, we 
know that ionization energy is always positive. So hopefully, putting all those things 
together, if you looked at this question again we'd get 100% on it, that our only 
option here is . 9, and that it's not the negative, it's the positive version, because 
we're talking about how much energy we have to put into the system in order to 
eject an electron. 

All right. And today we're going to mostly be talking about wave functions of 
electrons, but before we get to that, I wanted to review one last thing that's back on 
to Friday's topic, which was when we were solving the Schrodinger equation, or in 
fact, using the solution to the Schrodinger equation for the energy, the binding 
energy between an electron and a nucleus. And when we talked about that, what we 
found was that we could actually validate our predicted binding energies by looking 
at the emission spectra of the hydrogen atom, which is what we did as the demo, or 
we could think about the absorption spectra as well. 

And what we predict as an energy difference between two levels, we know should 
correspond to the energy of light that's either emitted, if we're giving off a photon, 
or that's absorbed if we're going to take on a photon and jump from a lower to a 
higher energy level. 
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So we came up with two formulas, which are similar to the two that I'm showing 
here. The formula tells us the frequency of the light that's emitted or absorbed based 
on the energy difference between the two levels that we're going between, that the 
electron is transitioning between. 

You'll notice that there's a little bit of a difference in these equations here from the 
ones from the other day, which is that you have this z squared value in there. So 
these are both called Rydberg formulas for figuring out the frequency of light emitted 
or absorbed, and before we were looking at the Rydberg formula specifically for the 
hydrogen atom, and now that we have this z squared term in the formula here, we're 
now talking about absolutely any one electron atom. 

And it should make sense where we got this from, because we know that the binding 
energy, if we're talking about a hydrogen atom, what is the binding energy equal to? 
Negative Rydberg over what? Yes. So, it's negative Rydberg constant over n 
squared. But if we're talking more generally about any one electron atom, now we 
have a more general equation for the binding energy, which has this z squared term 
out in front of it, right, so it's negative z squared times the Rydberg constant all over 
n squared. 

So, essentially when we're talking about these equations up here, all we're doing is 
talking about the regular Rydberg formulas, but instead we could go back and re-
derive the equation for any one electron atom, which would just mean that we put 
that z squared term in the front. 

So when you solve certain types of problems, such as problems later on in the 
second half of your p-set, if you need to talk about the frequency of light emitted or 
absorbed for a one electron atom, such as lithium plus 2, for example, then you 
would need to plug in z, and remember the z value for lithium would just be 3. The z 
value for hydrogen, of course, is 1, and that's why this term falls out of that equation 
when we're talking specifically about the hydrogen atom. 

So, just to finish our review of what we talked about on Friday, when we're thinking 
about transitions between two different states, and we're talking about a situation 
where the final state, the n final, is greater than n initial, in this case, are we talking 
about absorption or are we talking about emission? Hearing a little bit of a mix here. 

In fact, we're talking about absorption when n final is greater than n initial. We start 
at this lower energy state and go up -- that means we need to absorb a photon, we 
have to take in energy. Specifically, we have to take in this exact amount of energy 
in order to bump the electron up to the higher energy level. So that means that 
when instead we start high and go low, we're dealing with emission where we have 
excess energy that the electron's giving off, and that energy is going to be equal the 
energy of the photon that is released and, of course, through our equations we know 
how to get from energy to frequency or to wavelength of the photon that we're 
talking about. 

All right. So that's all I'm going to say today in terms of solving the energy part of 
the Schrodinger equation, so what we're really going to focus on is the other part of 
the Schrodinger equation today, which is solving for psi. 

So we're going to for psi, and before that, we're going to figure out that instead of 
just that one quantum number n, we're going to have a few other quantum numbers 



that fall out of solving the Schrodinger equation for what psi is. We're also going to 
talk more about what psi actually means. 

When we first introduced the Schrodinger equation, what I told you was think of psi 
as being some representation of what an electron is. We'll get more specific here, 
more specific even than just saying you can think of it as an orbital. We'll really think 
about what psi means. And in doing that, we'll also talk about the shapes of h atom 
wave functions, specifically the shapes of orbitals, and then something called radial 
probability distribution, which will make sense when we get to it. 

But, as I said before that, we have some more quantum numbers to take care of, 
because it turns out that when you solve the Schrodinger equation for psi, these 
other quantum numbers have to be the defined. When we talked about binding 
energy, we just had one quantum number that came out of it. And that quantum 
number was n, which was our principle quantum number, and we know that n could 
be equal to any integer value, so, 1, 2, 3, all the way up to infinity. And this 
quantization that comes out of having n is what gives us the quantization of different 
energy levels. That's why we can't have a continuum of energy, we actually have 
those quantized points. 

So, it turns out that n is not the only quantum number needed to describe a wave 
function, however. There's two more that you can see come out of it. And the first is 
l, and l is our angular momentum quantum number, and it's called that because it 
actually dictates the angular momentum that our electron has in our atom. And when 
we talk about l it is a quantum number, so because it's a quantum number, we know 
that it can only have discreet values, it can't just be any value we want, it's very 
specific values. And unlike n, l can start all the way down at 0, and it increases by 
integer value, so we go 1, 2, 3, and all the way up. But also unlike n, l cannot have 
just any value, we can't go into infinity. L is limited such that the highest value of l is 
n minus 1. We can't get any higher than that. 

So, it would be a good question to ask why are we limited -- clearly there's this 
relationship between l and n, and we can't get any higher than n equals one. We can 
actually think about why that is, and the reason is because l is our angular 
momentum. It describes the angular momentum of the electron. So another way to 
think about that is just the rotational kinetic energy of our electron. And we know 
that n describes the total energy, that total binding energy of the electron, so the 
total energy is going to be equal to potential energy plus kinetic energy. So if we say 
that l is just talking about our kinetic energy part, our rotational kinetic energy, and 
we know that electrons have potential energy, then it makes sense that l, in fact, can 
never go higher than n. And, in fact, it can't even reach n, because then we would 
have no potential energy at all in our electron, which is not correct. 

So, that's the second quantum number. And the third one is called m, it's also m sub 
l. This is what we call the magnetic quantum number, and we won't deal with the 
fact of its being the magnetic quantum number here -- that kind of tells us the shape 
of the orbital or the way that the electron will behave in a magnetic field, but what's 
more relevant to thinking about the limits of this number is that it's also the z 
component of the angular momentum. 

So since it's a component of the angular momentum, that means that it's never 
going to be able to go higher than l is, so it makes sense that, for example, it could 
start at and then go all the way up to l. But since it is a component it can have a 



direction, too, so can go up between negative l and positive l. So the allowed values 
for m sub l are going to be negative l, all the way up to 0, and then up to positive l. 

So, if we think of just an example, we could say that 4 l equals 2, what would be our 
lowest value of m sub l? Yup. So m sub l could equal negative 2, negative 1, 0, 1 or 
2. So we could have five different values of m sub l. 

So, those are our three quantum numbers. So if, in fact, we want to describe a wave 
function, we know that we need to describe it in terms of all three quantum 
numbers, and also as a function of our three positional factors, which are r, the 
radius, plus the two angles, theta and phi. So, we have now a complete description 
of a wave function that we can talk about. 

So, we can think about what is it that we would call the ground state wave function. 
We knew from Friday, when we talked about energy, that ground state was that n 
equals 1 value, that was the lowest energy, that was the most stable place for the 
electron to be. But now we need to talk about l and m as well. So now when we talk 
about a ground state in terms of wave function, we need to talk about the wave 
function of 1, 0, 0, and again, as a function of r, theta and phi. So this is our 
complete description of the ground state wave function. 

So, a lot of you talked about different types of orbitals in high school, I'm sure, or in 
previous courses, and it might be less common that you actually talked about a wave 
function that was labeled like this. We're used to labelling orbitals as an s, or a p, or 
a d, for example, but it turns out that these correlate to those letters that we're 
more used to seeing. Does anyone know what the 1, 0, orbital is also called? Yeah. 
And specfically it's the 1 s, so not just the s, but the 1 s orbital. 

So, using the terminology of chemists, which is a good thing to do, because in this 
course we are all chemists, we want to make sure that we're not using just the 
physical description of the numbers, but that we can correlate it to what we 
understand as orbitals, and instead of 1, 0, 0, we call this the 1 s orbital. The reason 
that we do this is because this is another way to completely describe it. The n 
designates the shell, so that's what this number is here, we're in the first shell. The l 
is what we call the sub shell. And instead of having a there, what we have here is an 
s. 

So, if we look at what the other sub shells are called, essentially we're just 
converting the number to a letter. L equals is s, what is l equals 1? Um-hmm, it's the 
p. What about 2? d, and 3? Yup, so 3 is f. So these names, they don't really make 
any sense if we're looking at them why they're called past s p and f, and it turns out 
that it comes from spectroscopy terms that are pre-quantum mechanics where, for 
example, this is called the sharp line, I think the principle, the diffuse, and the 
fundamental. It doesn't even make sense now, they're not used in spectroscopy 
anymore, but this is where the names originally came from and they did stick. So, 
we being chemists, we'll call that 1 s instead of 1, 0. 

In addition to having another name to denote l, we also have another name for the 
m designation here. So, for example, when l is equal to 0, we're going to find that 
we have to call -- we have to specify what m is as well. All right. So, when we have, 
for example, l equal to 1, what kind of orbital is this? The p orbital. And for example, 
we could also in this case, have m is equal to 0. If m is equal to 0, in this case we 
would call it the p z orbital, so we would have the subscript z here. 



Similarly, if m is equal to either plus 1 or minus 1, we would in turn call it the p y 

orbital, or the p x orbital. So you should know that any time m is equal to zero when

we are talking about p orbitals, that it's the p z. The p y and the p x are actually a bit

more complicated, they're linear combinations of the m plus 1, and the m minus 1

orbital, where 1 is the positive linear combination, and 1 is the negative linear 

combination. You're not responsible for that, you're not responsible for correlating

plus 1 to y, minus 1 to x. Just know that you have plus or minus 1, for our class, you 

can call it either x or y, either is fine, because it's a little bit more complicated than 

just the 1:1 translation between, for example, m equals and having a p z orbital. 


All right. So let's look at some of these wave functions and make sure that we know

how to name all of them in terms of orbitals and not just in terms of their numbers. 

Once we can do that we can go on and say okay, what actually is a wave function,

but first we need to know how to describe which ones were talking about. So we saw

that our lowest, our ground state wave function is 1, 0, 0. We can call that psi 1, 0, 

is how we write it as a wave function. We said that's the 1 s orbital. We also know

how to figure out the energy of this orbital, and we know how to figure out the 

energy using this formula here, which was the binding energy, which is negative r h,

and instead of n, we can plug it in because n equals 1, so over 1 squared, and the 

actual energy is here.


So, our next level up that we can go is going to be the n equals 2 energy level, but

we also have an l and an m value, so our lowest l is going to be a there. So we'll call

that psi 2, 0, wave function. What will we call that in terms of orbitals? Yup, so that's 

the 2 s orbital. So something I actually wanted to point out that I forgot to here is 

you'll notice that there's no subscript to the s. We said we have a subscript to the p, 

for example, that describes what m is equal to. The reason that we have no subscript

to the s, is because the only possibility for m when you have an s orbital is that m

has to be equal to 0. So we just assume it, you don't actually have to write it

because there is, in fact, only one possibility.


We can also figure out the energy of this orbital here, and the energy is equal to the

Rydberg constant. The negative of the Rydberg constant now divided by 2 squared.

So we can go on and do this for any orbital or any state function that we would like 

to. So, for example, if we talk about the 2, 1, 1 state label, that's just psi 2, 1, 1. 

What, in this case, would be our orbital? 2 p what? OK, good, I heard mixed 

answers, which is correct. So you can either write 2 p x or 2 p y, whichever one you 

want is fine. And again, you'll notice that our energy is absolutely the same for an

electron in that 2 p x orbital and in the 2 s orbital. So that's true for a hydrogen 

atom, it doesn't matter if you're in a p or an s orbital, their energies are the same.


Then we can also talk about the 2, 1, state function, which would be psi 2, 1, 0.

What is this orbital? Yup. And there's only one correct answer here, which is to 2 p z.

Is the energy going to be the same or different as up here? It's going to be the same 

energy. Again, the reason for that is because the energy only depends on the n value 

here, it doesn't depend on l or on m.


So finally, if we talk about our last example of when n is going to be equal 2, we can 

have 2, 1 for l and then minus 1 for m. We can re-write this as psi 2 1 negative 1.

And then our orbital is going to be just the opposite of whatever we said it was up 

here. So if you said 2 p x the first time, say 2 p y this time. And again, our energy is 

going to be the same where we again only depend on the n value.




All right. So hopefully we're pretty comfortable naming any type of wave function 
using the chemist terminology. Let's switch to a clicker question and just confirm 
that that is, in fact, true. So what's the corresponding orbital if we talk about this 
state, 5, 1, 0? And you can go ahead and give 10 seconds on that. 

OK. All right, 77%. So, that's OK, you don't have to memorize things as I speak, you 
just need to go back and look at this and make sure you understand how to name it 
and that you'll be able to, for example, by next class, get a similar clicker question 
correct, and good job to the 77% that did get it. So I think we're safe to move on 
here. 

And I just want to point out that now we have these three quantum numbers. The 
reason there are three quantum numbers is we're describing an orbital in three 
dimensions, so it makes sense that we would need to describe in terms of three 
different quantum numbers. And the complete description, as I said, is from n l and 
m. And when you talk about n for an orbital, it's talking about the shell -- that shell 
is kind of what you picture when you think of a classical picture of an atom where 
you have 1 energy level, the next one is further out, the next one's further away. 
That's kind of your shell that we're discussing. L is the sub shell here, and then we 
have m, which is finally the complete description of the orbital. And what you can 
see is that for any n that has an l equals 0, you can see here how there's only one 
possibility for and orbital description, and that's why we don't need to include the m 
when we're talking about and s orbital. 

The other thing that we know, which is what we were just discussing when we were 
going through the table is how this all relates to energy. And I want to really 
highlight here we're talking about for a hydrogen atom -- orbitals with the same n 
value have the same energy. Some of you might be saying in your heads, wait a 
second, I happen to know, I happen to remember from high school, that p orbitals 
have different energies then, for example, s orbitals. And that is not true for one 
electron atoms. We're going to get to more complicated atoms eventually where 
we're going to have more than one electron in it, but when we're talking about a 
single electron atom, we know that the binding energy is equal to the negative of the 
Rydberg constant over n squared, so it's only depends on n. 

So, for example, if we're talking about the n equals 2 state, all of these four orbital 
descriptions are going to have the same energy. And we can generalize to figure out, 
based on any principle quantum number n, how many orbitals we have of the same 
energy, and what we can say is that for any shell n, there are n squared degenerate 
orbitals. And the word degenerate simply means same energy, so you have n 
squared orbitals that are of equal energy when they're degenerate. 

So, let's look at where this comes from with an energy level diagram here. So what 
you can see is again, we've got this ground state. So if we go to the ground state, 
what you see is we're at that lowest energy level, and we only have one possibility 
for an orbital, because when n equals 1, that's all we can do. So that's the 1 s orbital 
-- we have n squared or 1 degenerate orbitals. When we talk about the n equals 2 
state, we now have 2 squared or 4 degenerate same energy orbitals, and those are 
the 2 s orbital. And then we also have the l being equal to 1 orbital, so those are 
going to be the 2 p x, the 2 p z, and the 2 p y orbital. All four of these orbitals have 
the same energy, they're degenerate. 



And as we go up the next energy level, which is based on n equals 3 principle 
quantum number, well now we have again the s, so we have the 3 s orbital, we're 
going to have three 3 p orbitals, right, so we'll have 3 p x, 3 p z, and 3 p y, and now 
we're actually also going to have five different possible l equals 2 orbitals. Does 
anyone remember the l equals 2? Yes, everyone remembers. Good. So we have five 
possible d orbitals. We'll call these here the 3 d x y, as the subscript, the 3 d y z, the 
3 d z squared, the 3 d x z, and the 3 d x squared minus y squared. 

So, what do you need to know here? What you need to know is that when m equals 
0, it's 3 d z squared. That's it. Again, these other p -- or the d x y, d y z, those are 
going to be those more complicated linear combinations, you don't need to worry 
about them. Eventually you will, at least, need to know the labels and know a little 
bit more about them. And in the second half of this course, Professor Drennen's 
going to talk to us about transition metals in depth, and that's when we'll really delve 
into d orbitals. For right now, you can kind of put the d orbitals in the back of your 
head. You need to know how to think about them in the same way we think about s 
and p orbitals, but for example, you don't yet need to know what all of the names 
are except for this 3 d z squared here. So we'll wait on that until we start talking 
more specifically about atoms where the d orbital becomes very significant. 

So, what we can see is this degeneracy. So what we know now is we can start 
thinking about the next step because we can fully describe the energy of orbitals, 
and we can fully describe a complete orbital in terms of its three quantum numbers, 
and its three positional variables, r, theta, and phi. So next we can think about okay, 
what is actually a wave function, and for example, what might the shape of different 
wave functions be. 

So essentially, what we're asking for here is the physical interpretation of psi, of the 
value of psi for an electron. And it turns out that the answer to can we have this 
physical interpretation of thinking about what psi means, the answer is really no, 
that we can't. There's no classical way to think about what a wave function is. 
There's no classical analogy that explains oh, this is what you can kind of picture 
when you picture a wave function. And that's somewhat inconvenient because we're 
working with wave functions, but it's a reality that comes out of quantum mechanics 
often, which is that we're describing a world that is so much different from the world 
that we observe on a day-to-day basis, that we're not always going to be able to 
make those one-to-one analogies. 

But luckily we don't have to worry about how we're going to picture all this, now that 
I said that, because even though there's no physical interpretation for what a wave 
function is, there is a physical interpretation for what a wave function squared 
means. So when we talk about a wave function squared, we're taking the square of 
the wave function, any one that we specify between n, l and m, at any position that 
we specify based on r, theta, and phi. And if we go ahead and square that, then what 
we get is a probability density, and specifically it's the probability of finding an 
electron in a certain small defined volume away from the nucleus. So it's a 
probability density. The important point here is it's not just a probability, it's a 
density, so we know that it's a probability divided by volume. 

And the person we have to thank for actually giving us this more concrete way to 
think about what a wave function squared is is Max Born here. And actually after the 
Schrodinger equation first was put forth, people had a lot of discussions about how is 
it that we can actually interpret what this wave function means, and a lot of ideas 



were put forth, and none of them worked out to match up with observations until 
Max Born here came up with the idea that we just square the wave function, and 
that's the probability density of finding an electron in a certain defined volume. 

And it's very helpful because it gives us a way to think about it. We can't actually go 
ahead and derive this equation of the wave function squared, because no one ever 
derived it, it's just an interpretation, but it's an interpretation that works essentially 
perfectly. Ever since this was first proposed, there has never been any observations 
that do not coincide with the idea, that did not match the fact that the probability 
density is equal to the wave function squared. 

So, also about Max Born, just to give you a little bit of a trivial pursuit type 
knowledge, he not only gave us this relationship between wave function squared, he 
also gave us Olivia Newton-John. This is her grandfather, I don't know if you can see 
from the eyes, I feel like there's a little bit of a resemblance there. So, I don't know 
what she grew up hearing about when she went to her grandparents' house, but it 
might have been wave function squared. So, a little tidbit of knowledge for you that's 
somewhat trivial. 

Then back to the non-trivial knowledge that is not trivial at all, in fact, is OK, how do 
we think about this probability density now that we have a little bit more of an idea. 

We know that it's a density, it's not an actual probability. So, one way we could look 
at it is by looking at this density dot diagram, where the density of the dots 
correlates to the probability density. So, what you see is near the nucleus, the 
density is the strongest, the dots are closest together. As you get far away from the 
nucleus, the dots get farther and farther apart, meaning the probability density at 
those volumes far away from the nucleus is going to be quite low, eventually going 
to almost zero, although it turns out that it never goes to exactly zero, so if we're 
talking about any orbital or any atom, it never actually ends, it never goes to zerio. 
But it turns out the probability is only significant within one angstrom. So you can 
either say that electrons are very, very tiny or that they're never ending, and both 
are pretty accurate ways to think about what an atom is. 

So, that's probability density, but in terms of thinking about it in terms of actual 
solutions to the wave function, let's take a little bit of a step back here. I have yet to 
show you the solution to a wave function for the hydrogen atom, so let me do that 
here, and then we'll build back up to probability densities, and it turns out that if 
we're talking about any wave function, we can actually break it up into two 
components, which are called the radial wave function and angular wave function. 
So, essentially we're just breaking it up into two parts that can be separated, and 
the part that is only dealing with the radius, so it's only a function of the radius of 
the electron from the nucleus. And we abbreviate that by calling it r, which is 
specified by two quantum numbers, and an l as a function of little r, radius. And we 
have the angular wave function, which is specified by l and m, and it's a function of 
the two angles when we're describing the position of the electron, so theta and phi. 

So, let's look at what this actually is for what we're showing here is the 1 s hydrogen 
atom. If you look in your book there's a whole table of different solutions to the 
Schrodinger equation for several different wave functions. So this is the 1 s, you can 
look it up if you're interested for the 2 s, or 3 s, or 5 s, or whatever you're curious 
about. But what I'm going to show you here is the 1 s solution. So you can see 
there's this radial part here, and you have the angular part, you can combine the two 



parts to get the total wave function. And what you can see is we have this new 
constant that we haven't seen before. So what do you see in there that is new? 

Yeah. This a sub nought. That's a new constant for us in this course. This is what's 
called the Bohr radius, and we'll explain -- hopefully we'll get to it today where this 
Bohr radius name comes from, but for now what you need to know is just that it's a 
constant, just treat it like a constant, and it turns out to be equal to 52 . 9 
pekameters or about 1/2 an angstrom. 

The more important thing that I want you to notice when you're looking at this wave 
equation for a 1 s h atom, is the fact that if you look at the angular component of the 
wave function, you'll notice that it's a constant. It doesn't depend on theta, it doesn't 
depend on phi. No matter where you specify your electron is in terms of those two 
angles, it doesn't matter the angular part of your wave function is going to be the 
same. 

So, what does that mean for us? Well, essentially what that tells is that these s 
orbitals are spherically symmetrical. That should make sense, right, because they're 
only dependent on r. How far you are away from the nucleus in terms of a radius, 
they don't depend at all on those two angles, they're independent of theta and 
they're independent of phi. 

So, what I'm showing in this picture here is just an electron cloud that you can see. 
Think of it as a probability density plot. And what here is just a graph of the 1 s wave 
function going across some radius defined this way, and you can see that the 
probability -- well, this is the wave function, so we would have to square it and think 
about the probability. So this squared at the origin is going to be a very high 
probability, and it decays off as you get farther and farther away from the nucleus or 
from the center, and that's independent of the angle. 

So, let's look at these probability plots of different s orbitals here, and up top here, 
we have the probability density plot and what you can see is what I just said, a very 
high probability density in the nucleus, decays as you go out. And what is plotted 
below is the actual wave function, so you can see it starts very high and then the 
decays down. More interesting is to look at the 2 s wave function. So, if we look at 
the bottom here and the actual plot of the wave function, we see it starts high, very 
positive, and it goes down and it eventually hits zero, and goes through zero and 
then becomes negative and then never quite hits zero again, although it approaches 
zero. 

So, at this place where it hits zero, that means that the square of the wave function 
is also going to be zero, right. So we can see if we look at the probability density 
plot, we can see there's a place where the probability density of finding an electron 
anywhere there is actually going to be zero. 

So we can think of a third case where we have the 3 s orbital, and in the 3 s orbital 
we see something similar, we start high, we go through zero, where there will now 
be zero probability density, as we can see in the in the density plot graph. Then we 
go negative and we go through zero again, which correlates to the second area of 
zero, that shows up also in our probability density plot, and then we're positive again 
and approach zero as we go to infinity for r. 



So, what this means is that when we're looking at an actual wave function, we're 
treating it as a wave, right, so waves can have both magnitude, but they can also 
have a direction, so they can be either positive or negative. 

So, for example, if we were looking at the actual wave function, we would say that 
these parts here have a positive amplitude, and in here we have a negative 
amplitude. And when we're looking at the probability density graphs, it doesn't make 
a difference, it's okay, It has no meaning for our actual plot there, because we're 
squaring it, so it doesn't matter whether it's negative or positive, all that matters is 
the magnitude. But when we're thinking about actual wave behavior of electrons, it's 
just important to keep in the back of our head that some areas have positive 
amplitude and some have negative. 

So we'll talk about this more we get into p orbitals and bonding is where it's going to 
become an issue. So I just want to kind of introduce that idea here. Because if we 
think about wave behavior of electrons and we're forming bonds, then what we have 
to do is have constructive interference of 2 different electrons, right, to form a bond, 
we want to and together those probabilities. So we want to have constructive 
interference to form a bond, whereas if we had destructive interference, we would 
not be forming a bond. So that's where you have to think about whether it's positive 
or negative. You don't have to think about it right now, but you might have heard in 
high school talking about p orbitals, the phase, sometimes you mark a p orbital as 
being a plus sign or negative sign. Did any of you do that in high school at all? A 
little bit, yeah. So, that's having to do with the actual wave function. So, that'll 
become more relevant later, bonding actually, a couple lectures down the road. But I 
just want to introduce it here while we do, in fact, have the wave function plots up 
here. 

But a real key in looking at these plots is where we, in fact, did go through zer and 
have this zero probability density. We call that a node, and a node, more specifically, 
is any value of either r, the radius, or the two angles for which the wave function, 
and that also means the wave function squared or the probability density, is going to 
be equal to zero. 

So, we can see in our 1 s orbital, how many nodes do we have? There's no nodes, 
yeah. It looks like we hit zero, but we actually don't -- remember that we never go 
all the way to zero, so there's these little points if we were to look really carefully at 
an accurate probability density plot, it would never actually hit zero. And then, for 
example, how many nodes do we have in the 3 s orbital? two. That's correct. So we 
have two nodes in the 3 s orbital. 

We can actually specify where those nodes are, which is written on your notes. For 
the 2 s orbital, at 2 a nought, so it's just 2 times that constant a nought, which is the 
Bohr radius. And for the 3 s, we have one at 1 . 9 a nought, and one at 7 . 1 a 
nought. 

We can also specify what kind of node we're talking about. We'll introduce in the 
next course angular nodes, but today we're just going to be talking about radial 
nodes, and a radial node is a value for r at which psi, and therefore, also the 
probability psi squared is going to be equal to zero. 

So, when we're talking about an s orbital, since there is no angular dependence, and 
it only depends on r, every single one of our nodes is actually going to specifically be 



a radial node, right, because these are, for example, this 2 a nought is a value of r, a 
value of the radius, no matter which way you go around at which there's going to be 
a node at which there is zero probability density of finding an electron there. 

So, it's very easy to calculate, however, the number of radial nodes, and this works 
not just for s orbitals, but also for p orbitals, or d orbitals, or whatever kind of work 
of orbitals you want to discuss. And that's just to take the principle quantum number 
and subtract it by 1, and then also subtract from that your l quantum number. 

So what you can do for a 1 s is just take 1 minus 1 and then l is equal to 0, so you 
have zero radial nodes. And that matches up with what we saw. If we try this for the 
2 s, we have 2 minus 1 minus 0. So what we should expect to see is one radial node, 
and that is what we see here in the probability density plot. And then if we think 
about 3 s, we want to start with 3, we subtract 1, again l is equal to 0, so minus and 
we have two radial nodes. 

So, this should be pretty straight forward, let's see if we can get close to a 100% on 
this one, which is how many radial nodes does a 4 p orbital have? And let's give 10 
seconds on that, make you think fast here. 

OK, so most people were correct, or well, the majority, at least, were correct. And 
seeing that it's a 4 p has two nodes -- let's just write this out since not everyone did 
get it correct. 

So, if we're talking about a 4 p orbital, and our equation is n minus 1 minus l, the 
principle quantum number is 4, 1 is 1 -- what is l for a p orbital? 

STUDENT: 1. 

PROFESSOR: 1. So, I tricked you a little, I guess I didn't put an s up there and that's 
what we had been talking about, so that was probably the issue. But what we find is 
that we have two radial nodes. All right. So we can switch back to our notes here. 

So, doing those probability density dot graphs, we can get an idea of the shape of 
those orbitals, we know that they're spherically symmetrical. We're not going to talk 
about p orbitals today, we're going to talk about p orbitals exclusively on Friday, and 
as I said, d orbitals you'll get to with Professor Drennen. 

But we can also think when we're talking about wave function squared, what we're 
really talking about is the probability density, right, the probability in some volume. 
But there's also a way to get rid of the volume part and actually talk about the 
probability of finding an electron at some certain area within the atom, and this is 
what we do using radial probability distribution graphs. And what that is the 
probability of finding an electron in some shell where we define the thickness as d r, 
some distance, r, from the nucleus. 

So, think about what we're saying here. We're saying the probability of finding an 
electron at some distance from the nucleus in some very thin shell that we describe 
by d r. So if you think of a shell, you can actually just think of an egg shell, that's 
probably the easiest way to think of it, where the yolk, if you really maybe make it a 
lot smaller might be the nucleus. And let's also make our egg perfectly symmetric 
and perfectly round. 



But still, when we're talking about the radial probability distribution, what we actually 
want to think about is what's the probability of finding the electron in that shell? 
Think of it as that egg shell part. 

So, we can do that by using this equation, which is for s orbitals where the radial 
probability distribution is going to be equal to 4 pi r squared times the wave function 
squared, d r. That should make sense to us, because when we talk about a wave 
function, we're talking about a probability divided by a volume, because we're talking 
about a probability density. So if we actually go ahead and multiply it by the volume 
of our shell, then we end up just with probability, which is kind of a nicer term to be 
thinking about here. 

So, of course, if we're talking about a perfectly spherical shell at some distance, 
thickness, d r, we talk about it as 4 pi r squared d r, so we just multiply that by the 
probability density. 

We can graph out what this is where we're graphing the radial probability density as 
a function of the radius. And what you see is that at zero, you start at zero. And so, 
the radial probability density at the nucleus is going to be zero, even though we 
know the probability density at the nucleus is very high, that's actually where is the 
highest. The reason in our radial probability distributions we start -- the reason, if 
you look at the zero point on the radius that we start at zero is because we're 
multiplying the probability density by some volume, and when we're not anywhere 
from the nucleus, that volume is defined as zero. So, it's a little bit artificial that 
we're seeing that zero point there. 

So, actually I want you to go ahead in your notes and circle that zero point and write 
"not a node." This is not a node because a node is where we actually have no 
probability density. So this, where we start at zero is not a node, is the first thing to 
point out. And as we get further and further from the radius, the volume we're 
multiplying it by actually gets bigger and bigger, because you can see how the 
volume of that little thin shell is going to get larger and larger as you get further 
away. 

So there's some distance where the probability of actually finding an electron there is 
going to be your maximum probability. And that's what we label as r sub m p, or 
your most probable radius. 

This is the point at which your probability is highest for finding an electron. This is 
equal to a sub nought for a hydrogen atom, and we remember that that's just our 
Bohr radius, which is . 5 2 9 angstroms. And basically, what that means is you can 
actually find an electron anywhere going away from the nucleus, but you're most 
likely to find that you have the highest probability at a distance of a sub nought, or 
the Bohr radius. 

So, I said I'd tell you a little bit more about where this Bohr radius came from, and it 
came from a model of the atom that pre-dated quantum mechanics, and Neils Bohr 
is who came up with the idea of the Bohr radius, and here is hanging out with 
Einstein, so he had some pretty good company that he kept. And what you need to 
remember when we're thinking about this model of the atom is that in 1911 it had 
already been discovered that we have an electron, and we have a nucleus, and there 
needs to be some way that those two hang together, but it was not for another 15 



years that we actually had the Schrodinger equation that allowed us to understand 
the interaction fully between the electron and the nucleus. 

So all that Bohr, for example, had to go on at this point was a more classical picture 
of the atom, as you can see on the left side of the screen there, which is the idea 
that the electrons actually somehow just orbiting the nucleus. And even though he 
could figure out that this wasn't possible, he still used this as a starting point, and 
what he did know was that these energy levels that were within hydrogen atom were 
quantized. and he knew this the same way that we saw it in the last class, which is 
when we viewed the difference spectra coming out from the hydrogen, and we also 
did it for neon, but we saw in the hydrogen atom that it was very discreet energy 
levels that we could observe. He knew the same thing that had been observed by 
that point. 

So, what he did was kind of impose a quantum mechanical model, not a full one, just 
the idea that those energy levels were quantized on to the classical picture of an 
atom that has a discreet orbit. And what he came out with when he did some 
calculations is that there's the radius that he could calculate was equal to this 
number a sub nought, which is what we call the Bohr radius, and it turns out that the 
Bohr radius happens to be the radius most probable for a hydrogen atom. 

And the reason we won't talk any more about this Bohr model is because, of course, 
it's not correct. So we're not going to spend too much time on it here. But we can 
see, for example, one reason or one way in which is not correct. Because what it 
tells is that we can figure out exactly what the radius of an electron and a nucleus 
are in a hydrogen atom. That's a deterministic way of doing things, that's what you 
get from classical mechanics. 

But the reality that we know from our quantum mechanical model, is that we can't 
know exactly what the radius is, all we can say is what the probability is of the radius 
being at certain different points. so, that's a more complete quantum mechanical 
picture of what is going on here. So if we superimpose our radial probability 
distribution onto the Bohr radius, we see it's much more complicated than just 
having a discreet radius. We can actually have any radius, but some radii just have 
much, much smaller probabilities of actually being significant or not. 

So, I think we're a little bit out of time today, but we'll start next class with thinking 
about drawing radial probability distributions of more than just the 1 s orbital. 


