MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.111 Lecture Summary #13

Readings for today: Section 3.1 (3^{rd} or 4^{th} *ed*) – The Basic VSEPR Model, Section 3.2 (3^{rd} or 4^{th} *ed*) – Molecules with Lone Pairs on the Central Atom.

Read for Lecture #14: Section 3.8 (3.9 in 3rd ed) – The Limitations of Lewis's Theory, Section 3.9 (3.10 in 3rd ed) – Molecular Orbitals, Section 3.10 (3.11 in 3rd ed) – The Electron Configuration of Diatomic Molecules, Section 3.11 (3.12 in 3rd ed) – Bonding in Heteronuclear Diatomic Molecules.

Topics: I. Polar covalent bonds and polar molecules (continued from Lecture #12)
II. The shapes of molecules: VSEPR theory
A. Molecules *without* lone pairs
B. Molecules *with* lone pairs

I. POLAR COVALENT BONDS/POLAR MOLECULES (continued from Lect. #12)

A polar covalent bond is an **unequal sharing** of e's between two atoms with different electronegativities (χ). In general, a bond between two atoms with an χ difference of > _____ and < _____ (on the Pauling scale) is considered polar covalent.

Polar molecules have a non-zero net dipole moment.

In large organic molecules and in biomolecules, such as proteins, we often consider the number of polar groups within the molecule.

II. THE SHAPES OF MOLECULES: VALENCE SHELL ELECTRON PAIR REPULSION (VSEPR) THEORY

The shape (______) of molecules influences physical and chemical properties, including melting point, boiling point, and reactivity.

Shape is particularly important in biological systems where, for example, a molecule must fit precisely into the active site of an enzyme.

VSEPR Theory can be used to predict molecular geometry with high accuracy. The theory is based on Lewis structure and the principles that

- valence electron pairs ______ each other.
- the geometry around the central atom will be such as to minimize the electron repulsion.

VSEPR nomenclature:

General guidelines for the VSEPR model:

• ______ number (SN) is used to predict geometries.

SN = (# of atoms bonded to central atom) + (# of lone pairs on central atom)

Note: When considering electron-pair repulsion, double bonds and triple bonds can be treated like single bonds. This approximation is valid for qualitative purposes.

This means the number of ______ bonded to the central atom is important, not the BONDS to central atom.

- If a molecule has two or more resonance structures, the VSEPR model can be applied to any one of them.
- If there is more than 1 central atom in a molecule, consider the bonding about each atom independently.

A. Molecules *without* lone pairs

Note: Bonds into the paper are dashed, and bonds out of the paper are thick and triangular.

Examples of molecules *without* lone pairs:

	Formula type	SN	Lewis structure	Geometry	Bond angle
CO ₂	AX_2	2	ö —c—ö	Linear	

B. Molecules *with* lone pairs

When lone pairs are involved, additional details must be considered.

Attractive forces exerted by the nuclei of the two bonded atoms hold electrons in a bond. These electrons have less "spatial distribution" than lone pairs, meaning

- electrons in bonds take up ______ space.
- lone-pair e's take up more space, and therefore experience ______ repulsion.

Thus, according to VSEPR, the repulsive forces decrease in the following order:

lone-pair/lone-pair > lone-pair/bonding-pair > bonding-pair/bonding-pair repulsion repulsion repulsion

Rationalization of shapes based on VSEPR theory

• AX₄E molecules have a seesaw shape. An axial lone pair would repel _____ bonding electron pairs strongly, whereas an equatorial lone pair repels only _____ strongly.

axial lone pair

equatorial lone pair

• AX_3E_2 molecules have a ______. Lone pairs occupy two of the three equatorial positions, and these lone-pair electrons move away from each other slightly.

• AX_4E_2 molecules are square planar. The two lone pairs are farthest apart when they are on opposite sides of the central atom.

• In molecules with lone-pair e⁻s, angles between bonded atoms tend to be ______ relative to the equivalent SN structures where only bonding electrons are present.

Example: NH₃

• Atomic size ______ down a column of the periodic table. Therefore, lone-pairs occupy larger spatial volumes as one moves down a column, and the angles between bonded atoms tend to be even smaller relative to the equivalent SN structures where only bonding electrons are present.

Formula type	SN	Molecular shape	Geometry	Bond angle
AX ₂ E	3		bent	
AX ₃ E	4		trigonal pyramidal	
AX_2E_2	4		bent	
AX_4E	5		see-saw	
AX_3E_2	5		t-shaped	
AX ₂ E ₃	5			
AX_5E	6		square pyramidal	

Examples of molecules *with* lone pairs:

The ideas of VSEPR make possible many predictions (or rationalizations) of molecular geometries about a central atom. There are very few incorrect predictions.

However, VSEPR provides no information about energies of bonds or about how multiple bonds affect structure.