5.111 Lecture Summary #22

Wednesday, October 31, 2014

Reading for Today: Sections 11.13, 11.18-11.19, 12.1-12.3 in 5^{th} ed. (10.13, 10.18-10.19, 11.1-11.3 in 4^{th} ed.)

Reading for Lecture #23: Sections 12.4-12.6 in 5th ed. (4th ed: 11.4-11.6)

Topics: I. pH of salt solutions II. Buffers!

I. pH of salt solutions

A salt is formed by the neutralization of an acid by a base.

The pH of salt in water is not always _____

Salts that contain the conjugate acids of weak bases produce *acidic* aqueous solutions; so do salts that contain small, highly charged metal cations (e.g. Fe³⁺).

(Note: all Group 1 and 2 metals (e.g. Li^+ , Ca^{+2}) and all metal cations with charge +1 (e.g. Ag^{+1}) are *neutral*.)

Salts that contain the conjugate bases of weak acids produce basic aqueous solution.

1) NH_4Cl (aq) will produce a(n) ______ solution.

 NH_4^+ Is NH_4^+ a conjugate acid of a weak base and therefore a weak acid? $K_a = 5.6 \times 10^{-10}$

Is NH_3 a weak base? $K_b = 1.8 \times 10^{-5}$

Cl Is Cl a conjugate base of a weak acid and therefore a weak base?

Is HCl a weak acid? $K_a = 10^7$

2) NaCH₃COO (aq) will produce a(n) _____solution. K_a of CH₃COOH is 1.76 x 10⁻⁵

Na⁺ Is Na⁺ a conjugate acid of a weak base and therefore acidic?

CH₃COO⁻ Is CH₃COO⁻ a conjugate base of a weak acid and therefore basic? Is CH₃COOH is weak acid?

3) General rule for compound XY

 X^+ Is X^+ a conjugate acid of a weak base? If yes, then acidic; If no, neutral

Y Is Y a conjugate base of a weak acid? If yes, then basic; If no, neutral

Overall: acidic+neutral=acidic; basic+neutral=basic;neutral+neutral=neutral

II. BUFFERS!

A **buffer** solution is any solution that maintains an approximately _____pH despite small additions of acid and base.

An **acid buffer** <"eqpuluru"qh"c""_____cpf 'kw'" _____cpf 'kw'" _____"uwr r nied as a salt. It buffers on the acidic side of neutral.

A **base buffer**: consists of a weak **base** and its conjugate **acid** supplied as a salt. It buffers on the basic side of neutral.

Acid Buffer Example: Mix acetic acid with an acetate salt and get dynamic equilibrium:

$$CH_3COOH(aq) + H_2O(l) \implies H_3O^+(aq) + CH_3CO_2^-(aq)$$

What happens if strong acid is added to a solution containing approximately equal amounts of $CH_3CO_2^-$ and CH_3COOH ?

- _____tgcevkqp

What happens if OH base is added?

- The base removes a proton from CH_3COOH to form H_2O and CH_3CO_2 molecules.
- Vj g"cffgf""""kqpu"ctg"ghgevkxgny removed and the pH stays constant.

Acid buffer action: The weak acid, HA, transfers protons to OH^- ions supplied by strong base. The conjugate base, A^- , of the weak acid accepts protons from the H_3O^+ ions supplied by a strong acid.

A strong acid and the salt of its conjugate base don't make a good buffer. Why?

Base Buffer Example: NH_3 (aq) + H_2O (l) $\longrightarrow NH_4^+$ (aq) + OH^- (aq)

When strong acid is added, NH_3 accepts protons from incoming acid to make NH_4^+ . When strong base is added, NH_4^+ donates a proton to form NH_3 and H_2O .

pH remckpu'y g'"____0

Base buffer action : The weak base, B, accepts protons supplied by strong acid. The conjugate acid, BH ⁺ , of the weak base transfers protons to the OH ⁻ ions supplied by a strong base.		
A buffer is a mixture of weak conjugate acids and bases that stabilize the pH of a solution by providing c or for protons.		
Buffers are important in biology! Blood is buffered in the range of 7.35-7.45. Buffering agents: H_2CO_3/HCO_3		
<u>Sample Buffer Problem</u> : Suppose 1.00 mol of HCOOH and 0.500 mol of NaHCOO are added to water and diluted to 1.0 L. Calculate the pH. $(K_a = 1.77 \times 10^{-4})$		
initial molarity change in molarity equilibrium molarity	$HCOOH + H_2O \Longrightarrow$ 1.00 -x	$H_3O^+ + HCOO^-$ 0 0.500 +x +x
$K_a = 1.77 \times 10^{-4} =$		
Using approximation that x is small compared to 1.00 and 0.500,		
$K_a = 1.77 \times 10^{-4} =$		
$x = 3.54 \times 10^{-4} M$		
Check assumption		
$3.54 \times 10^{-4} =$		
pH =		
Now –Calculate the pH given that 0.100 mol of a strong acid (HCl) had been included in the 1.0 L solution.		
Because 0.100 mol of HCl tgcew'y ky """"""""""""""""""""""""""""""""""		

$$HCOOH + H_2O \implies H_3O^+ + HCOO^-$$

initial molarity change in molarity equilibrium molarity

$$K_a = 1.77 \times 10^{-4} =$$

Using approximation that x is small,

$$K_a = 1.77 \times 10^{-4} = x = 4.87 \times 10^{-4}$$

Check assumption (5% rule)

$$pH = -log [H_3O^+] = 3.31$$

So addition of 0.10 mol of strong acid only changed pH from 3.45 to 3.31!

Designing a Buffer

One must consider the relationship between the ratio of [HA] to $[A^-]$, pK_a , and pH in designing a buffer.

$$HA (aq) + H_2O \implies H_3O^+ (aq) + A^- (aq)$$
 $K_a = \frac{[H_3O^+][A^-]}{[HA]}$

Rearrange:
$$[H_3O^+] = K_a x [HA]$$
$$[A^-]$$

Take logarithms of both sides:
$$\log [H_3O^+] = \log K_a + \log \frac{[HA]}{[A^-]}$$

Multiply by (-):
$$-\log [H_3O^+] = -\log K_a - \log \frac{[HA]}{[A^-]}$$

That is:
$$pH = pK_a - log \left(\frac{[HA]}{[A^-]}\right)_{eq}$$

The values of [HA] and $[A^{-}]$ in the equation are at equilibrium.

However, a weak acid HA typically loses only a tiny fraction of its protons.

Likewise, a weak base A- typically only accepts a tiny fraction of protons.

So initial concentration is approximately ______ to equilibrium concentration

So
$$pH \cong pK_a - log \left(\frac{[HA]_0}{[A^-]_0}\right)$$
 Henderson-Hasselbalch Equation initial

This assumption is valid when $[H_3O^+_'k\iota']^*$ eqo pared to [HA] and $[A^-]$ (i.e. less than 5%).

Example: Design a buffer system with pH 4.60.

Acetic acid is suitable with a pK_a of 4.75

A buffer solution is most effective in the range of pK_a ±1

$$pH = pK_a - log \frac{[CH_3COOH]_0}{[CH_3COO^-]_0}$$

$$\log \frac{[CH_3COOH]_0}{[CH_3COO^{-}]_0} = pK_a - pH = 4.75 - 4.60 = 0.15$$

$$\frac{[\text{CH}_3\text{COOH}]_0}{[\text{CH}_3\text{COO}^-]_0} = 10^{0.15} = 1.4$$

The ratio is more important than the amounts used.

If you use too low concentrations, the Henderson-Hasselbalch equation won't be valid.

For pH 4.60, $[H_3O^+]$ is 2.5 x 10^{-5} .

$$\frac{2.5 \times 10^{-5}}{\text{[HA] or [A-]}} \times 100\% < 5\%$$
 need concentration > 5.0 x 10^{-4} M

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.