Write your name and your TA's name below. **Do not open the exam until the start of the exam is announced.** The exam is closed notes and closed book.

- 1. Read each part of each problem carefully and thoroughly.
- 2. Show your work. Indicate units. Use correct significant figures.
- 3. Make your dots on Lewis structures clearly visible.
- 4. If you don't understand what the problem is requesting, raise your hand and a proctor will come to your desk.
- 5. Physical constants, formulas and a periodic table are given on the last page. You may detach this page **once the exam has started**.

TRANSITION METALS		1. (32 points)
		2. (10 points)
CHEMICAL KINETICS		3. (16 points)
NUCLEAR KINETICS		4. (10 points)
OXIDATION REDUCTION		5. (10 points)
		6. (10 points)
		7. (12 points)
	Total (100 points)	
Name		
TA		

1. ′	ΓRA	NSITIO	ON N	MET	ALS	(32	points	total)
-------------	-----	--------	------	------------	-----	-----	--------	--------

1. TRANSITION METALS (32 points total)	
(a) (3 points) Calculate the d-count for Fe ³⁺	
(b) (11 points) For Fe ³⁺ , (i) in the appropriate places below, draw electrons to show orbital occupancies in both weak and strong oct with the names of the d-orbitals, and (iii) with the appropriate orb	ahedral fields. Label the diagrams (ii)
Weak Field Octahedral Diagram	Strong Field Octahedral Diagram
Weak Field Octahedral Diagram c) (6 points) Fill in the blanks below based on your diagrams in pa	
<u> </u>	
c) (6 points) Fill in the blanks below based on your diagrams in pa	art (b).
c) (6 points) Fill in the blanks below based on your diagrams in particle. Answer for Weak Field Diagram (i) system is spin (ii) # unpaired electrons is	Answer for Strong Field Diagram system is spin # of unpaired electrons is d ⁿ electron configuration

f) (6 points) <u>Calculate</u> the octahedral crystal field splitting energy in kJ/mol for an Fe ³⁺ absorbs light most intensely at 700. nm. Show your work.	complex that
2. TRANSITION METALS (10 points total)	
(a) (6 points) Draw d-orbitals, d_z^2 and d_{yz} on top of the diagrams below.	
$draw d_{z^2} here \hspace{1cm} draw d_{yz} here$	
b) (4 points) Predict the relative energies of just these two d-orbitals for the linear moleculong the Z-axis. Explain your reasoning.	ule drawn

3. CHEMICAL KINETICS (16 points total)

The following data were obtained for the reaction O₂ (g) + 2NO (g) \rightarrow 2NO₂ (g). Initial concentrations, mol•L⁻¹

Experiment	$[O_2]_0$	[NO] ₀	Initial rates, mol•L ⁻¹ •s ⁻¹
1	1.10 x 10 ⁻²	1.30 x 10 ⁻²	3.21 x 10 ⁻³
2	2.20 x 10 ⁻²	1.30 x 10 ⁻²	6.40 x 10 ⁻³
3	1.10 x 10 ⁻²	2.60 x 10 ⁻²	12.8 x 10 ⁻³

- (a) (3 points) Determine the order of the reaction with respect to [O2]. No need to show work.
- **(b)** (3 points) Determine the order of the reaction with respect to [NO]. No need to show work.
- (c) (3 points) Write the rate law for the overall reaction. No need to show work.
- (d) (3 points) Determine the order of the overall reaction. No need to show work.
- (e) (4 points) Calculate the rate constant k (the value and the units). Show your work.

4. NUCLEAR CHEMISTRY (10 points)

The activity of a strontium-90 source is 3.0×10^{14} Bq and activity in Bq after 75.0 years have passed. Show your wo	
5. OXIDATION REDUCTION (10 points)	
(a) (6 points) Balance in BASIC solution the following sk reduction half-reactions: Pb(OH) 4^{2-} (aq) + ClO ⁻ (aq) \rightarrow F	

6. OXIDATION-REDUCTION (10 points)

For the following reagents under standard conditions: Au (s), Cl₂ (g), Pb (s), Sn (s), Ni (s), Cd (s), Zn (s), Au⁺ (aq), Cl⁻ (aq), Pb²⁺ (aq), Sn²⁺ (aq), Ni²⁺ (aq), Zn²⁺ (aq)

Standard Reduction Potentials at 25°C

Half-Reactions	$E^{\circ}(\text{volts})$
$Au^+(aq)+e^- \Rightarrow Au(s)$	1.69
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	1.36
$2H^{+}(aq) + 2e^{-} \Rightarrow H2(g)$	0
$Pb^{2+}(aq) + 2 e^{-} \Rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(aq) + 2 e^{-} \Rightarrow \operatorname{Sn}(s)$	-0.15
$Ni^{2+}(aq) + 2e^{-} \Rightarrow Ni(s)$	0.26
$Cd^{2+}(aq) + 2 e^{-} \Rightarrow Cd(s)$	-0.40
$Zn^{2+}(aq) + 2e^{-} \Rightarrow Zn(s)$	-0.76

(a) (3 points) State which reagent is the strongest oxidizing agent.

(b) (3 points) State which reagent is the strongest reducing agent.

(c) (4 points) State which reagent(s) will reduce Pb^{2+} (aq) while leaving Cd^{2+} (aq) unreacted.

7. OXIDATION-REDUCTION (12 points)

A galvanic cell is constructed using the following half-reactions

Half-Reactions	E°(volts) at 25°C
$Pb^{2+}(aq) + 2e^{-} \Rightarrow Pb(s)$	- 0.13
Cr^{3+} (aq)+ $e^- \Rightarrow Cr^{2+}$ (aq)	- 0.42

Calculate the initial voltage generated by the cell at 25 °C if the initial concentration of Pb²⁺ (aq) is 0.15 M, Cr²⁺(aq) is 0.20 M, and Cr³⁺ (aq) is 0.0030 M. Show your work.

The Active Metals		IVB	VB	VIB	VIIB	0	VIIIB	2	B	IB	IIIA	IVA	C A N	VIA	VIIA	$\frac{18^{4}}{\text{VIIIA}}$
																Noble Gases
																2
											ı	The	The Nonmetals	tals	ı	He 4.003
4 Be											S B	9)	ΓZ	∞ 0	6 н	N 20
9.012											10.81	12.011	14.007	15.999	86	20.179
12											13	14	15	16	17	18
Mg											Al	Si	Ь	S	C	Ar
24.305				Tr	Transition Elements	Elemen	ıts	١	ı	١	286.982	28.086	30.974	32.06	35.453	39.948
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Ca	Sc	Τi	>	Cr	Mn	Fe	ဝိ	ï	Cu	Zn	Ga	Ge	As	Se	Br	Kr
40.08	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.38	69.72	72.59	74.922	78.96	79.904	83.80
38	39	40	41	42	43	44	45	46	47	48	46	50	51	52	53	54
Sr 87.63	Y 80 90	Zr 01 224	Nb 90 00	Mo 05 94	ည ၁	Ru 101 07	Rh 102 906	Pd 106.42	Ag 107 868	Cd	In 11.4 82	Sn 118 60	Sb	Te	I 126 904	Xe
70.,	66.700	+77:17	72	77.57		76	77	76.001	70	117:41	114.02	0.01	02	00.721	\rightarrow	65.151
Ba	J, La	H,	ر / Ta	† ≽	Re Re	o S	, <u>1</u>	/8 Pt	Au	Hg	- E	97 Pb	Bi.	Po Po	At	R Ru
137.33	138.905	178.49	180.948	==	186.21	190.2	192.22	195.08	196.966	200.59	204.38	207.2	208.98	(209)	(210)	(222)
88 Ra 226.025	89 Ac 227.028	† 104 Unq (261)	105 Unp (262)	106 Unh (263)												
						ı	Inne	er Trans	Inner Transition Metals	tals	ı	ı	ı	ı	ı	
,		58	59	09	61	62	63	49	65	99	29	89	69	70	71	
*Lanthanides	des	Le 140.12	Fr 140.908	Nd 144.24	rm (145)	sm 150.36	Eu 151.96	od 157.25	158.925	Dy 162.50	но 164.930	Er 167.26	1m 168.934	Y b 173.04	Lu 174.967	
		06	91	92	93	94	95	96	97	86	66	100	101	102	103	_
† Actinides		Th 232.038	Pa 231.036	U 238.029	Np 237.048	Pu (244)	Am (243)	Cm (247)	Bk (247)	Cf (251)	Es (252)	Fm (257)	Md (258)	No (259)	Lr (260)	

Equation Sheet Exam 4

$$c = 2.9979 \times 10^8 \text{ m/s}$$

$$h = 6.6261 \times 10^{-34} \text{ J s}$$

$$N_A = 6.02214 \times 10^{23} \text{ mol}^{-1}$$

$$R = 8.314 \text{ J/(K mol)}$$

$$1 \text{ eV} = 1.60218 \times 10^{-19} \text{ J}$$

$$K_w = 1.00 \times 10^{-14} \text{ at } 25.0^{\circ}\text{C}$$

$$14.00 = pH + pOH at 25.0$$
°C

$$\Im$$
 (Faraday's constant) = 96,485 C mol⁻¹

Electromagnetic	Spectrum:
-----------------	-----------

Violet ~ 400-430 nm

Blue $\sim 431-490 \text{ nm}$

Green $\sim 491-560 \text{ nm}$

Yellow ~ 561-580 nm

Orange $\sim 581-620 \text{ nm}$

Red ~ 621-700 nm

Complementary Colors: red/green, blue/orange, yellow/violet

 $I^- < Br^- < Cl^-$ (weak field ligands)

<F < OH < H₂O (intermediate)

<NH₃ < CO < CN⁻ (strong field ligands)

1 Coulomb • Volt = 1 Joule

1 Bq = 1 nuclei/sec

$$1A = 1C/s$$
 $1W = 1 J/s$

ln = 2.3025851log

$$1 J = 1 kgm^2 s^{-2}$$

$$x = [-b \pm (b^2 - 4ac)^{1/2}]/2a$$

$$ax^2 + bx + c = 0$$

 $E = hv = hc/\lambda$

 $c=\nu\lambda$

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K$$

$$\Delta G = RT \ln Q/K$$

$$\ln (K_2/K_1) = - (\Delta H^{\circ}/R)(1/T_2 - 1/T_1)$$

$$pH \approx pK_a - \log (HA/A^-)$$

$$pH = -log [H_3O^+]$$
 $pOH = -log [OH^-]$

$$K_w = K_a K_b$$
 $pK = -log K$

$$Q = It$$

$$\Delta G^{\circ}_{\text{cell}} = -(n)(\Im) \Delta E^{\circ}_{\text{cell}}$$

$$\Delta E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode})$$

$$\Delta E^{\circ} = E^{\circ}(\text{reduction}) - E^{\circ}(\text{oxidation})$$

$$\Delta E_{\text{cell}} = E^{\circ}_{\text{cell}} - (RT/n\Im)\ln Q$$

$$RT/\Im = 0.025693 \text{ V at } 25.0 \text{ }^{\circ}\text{C}$$

$$\Im/RT = 38.921 \text{ V}^{-1} \text{ at } 25.0 \text{ }^{\circ}\text{C}$$

$$\Delta E_{\text{cell}} = E_{\text{cell}}^{\circ} - [(0.025693 \text{ V})(\ln \text{Q})/\text{n}] \text{ at } 25.0^{\circ}\text{C}$$

$$\Delta E_{\text{cell}} = E^{\circ}_{\text{cell}} - [(0.0592 \text{ V})(\log \text{Q})/\text{n}] \text{ at } 25.0^{\circ}\text{C}$$

$$\ln K = (n\Im/RT) \Delta E^{\circ}$$

$$A = A_0 e^{-kt}$$

$$N = N_o e^{-kt}$$

$$A = kN$$

$$[A] = [A]_0 e^{-kt}$$

$$t_{1/2} = \ln 2 / k$$

$$1/[A] = 1/[A]_o + kt$$

$$t_{\frac{1}{2}} = 1 / k[A]_{o}$$

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.