Write your name and your TA's name below. **Do not open the exam until the start of the exam is announced.** 1) Read each part of a problem thoroughly. Many of a problem's latter parts can be solved without having solved earlier parts. If you need a numerical result that you were not successful in obtaining for the execution of a latter part, make a physically reasonable approximation for that quantity. 2) Significant figure usage and units must be correct. 3) If you don't understand what the problem is requesting, raise your hand. 4) Physical constants, formulas and a periodic table are given on the last 2 pages. You may detach these pages **once the exam has started**.

TA	Name	
	TOTAL	(200 points)
PAGE 14	15. PHOTON EMISSION	(8 points)
PAGE 13	14. PHOTOELECTRIC EFFECT	(12 points)
PAGE 13	13. ORBITALS AND PERIODIC TRENDS	(12 points)
PAGE 12	12. LEWIS STRUCTURES, VSEPR & HYBRIDIATION	(25 points)
PAGE 10	11. MOLECULAR ORBITAL THEORY	(26 points)
PAGE 10	10. THERMODYNAMICS	(12 points)
PAGE 9	9. BUFFERS	(10 points)
PAGE 8	8. ACID-BASE TITRATION CURVES	(5 points)
PAGE 8	7. ACID-BASE EQUILIBRIA	(10 points)
PAGE 7	6. REDOX AND THERMODYNAMICS	(12 points)
PAGE 6	5. OXIDATION-REDUCTION	(8 points)
PAGE 6	4. TRANSITION METALS	(16 points)
PAGE 5	3. REACTION MECHANISMS	(8 points)
PAGE 4	2. ENZYME KINETICS	(7 points)
PAGE 2	1. KINETICS & EQUILIBRIUM	(29 points)

1. KINETICS AND EQUILIBRIUM (29 points total)

For a reversible, one step reaction $2A \rightleftharpoons B + C$, the rate constant for the forward reaction is $406 \text{ M}^{-1} \text{ min}^{-1}$ and the rate constant for the reverse reaction is $244 \text{ M}^{-1} \text{ min}^{-1}$. The activation energy for the forward reaction is 26.2 kJ mol^{-1} and that for the reverse reaction is 42.4 kJ mol^{-1} .

(a) (5 points) On the axes below, $\underline{\text{draw}}$ a reaction coordinate diagram for this reaction, $\underline{\text{showing}}$ the curve, and $\underline{\text{labeling}}$ (i) ΔE , (ii) $E_{a,f}$, and (iii) $E_{a,r}$. $\underline{\text{State}}$ whether the reaction is endothermic or exothermic.

(b) (4 points) Calculate ΔE for this reaction (2A \Longrightarrow B + C). Show your work.

(c) (4 points) <u>Calculate</u> the equilibrium constant (K) for this reaction ($2A \implies B + C$). Show your work.

(d) (6 points) (i) <u>Predict</u> the effect of raising the temperature on the forward rate constant (k₁), and (ii) <u>compare</u> it to the effect of raising the temperature on the reverse rate constant (k₋₁). <u>Explain your answer</u>.

your answer.
(f) (6 points) On the axes below, <u>draw</u> a single reaction coordinate diagram, that includes both a catalyzed (dashed line) and a noncatalyzed (solid line) reaction curve, indicating the effect of adding a catalyst to the reaction. <u>Briefly explain</u> what a catalyst does.
P.E.
reaction coordinate \rightarrow
2. ENZYME KINETICS (7 points total) The enzyme penicillinase degrades the antibiotic penicillin, leading to bacterial resistance. The Michaelis-Menten constants for this enzyme and substrate are $K_m = 5 \times 10^{-5}$ mol/L and $k_2 = 2 \times 10^3$ s ⁻¹ .
(a) (4 points) <u>Calculate</u> the maximum rate of this reaction if the total enzyme concentration is 7×10^{-5} M.

(b) (3 points) Find the substrate concentration for which the rate will be half of that calculated in part

(a). No need to show work.

(e) (4 points) Predict the effect of raising the temperature on the equilibrium constant (K). Explain

3. REACTION MECHANISMS (8 points total)

For the reaction 2 NO + $O_2 \rightarrow 2$ NO₂, <u>write</u> the rate law for the formation of NO₂ using the following mechanistic proposal and the steady state approximation. Be sure to eliminate intermediates from the rate expression. **Do not** make any assumptions about fast or slow steps (i.e. do not simplify your expression by assuming anything about the relative magnitude of k_{-1} and k_2). Show all work for full credit.

Step 1 NO + NO
$$\stackrel{k_1}{\rightleftharpoons}$$
 N₂O₂

$$\stackrel{k_2}{k_{-1}}$$
Step 2 N₂O₂ + O₂ \rightarrow 2 NO₂

4. TRANSITION METALS (16 points total)

Ni²⁺ in a coordination complex is paramagnetic. (a) <u>Draw</u> the crystal field splitting diagrams <u>showing</u> relative splitting energies for an octahedral crystal field and a tetrahedral crystal field, <u>labeling</u> the diagrams with the (b) names of the d-orbitals, and (c) and symbols for octahedral and tetrahedral field splitting energy. (e) <u>Fill</u> both diagrams with the proper number of electrons and <u>state</u> below each diagram whether the geometry is consistent with a paramagnetic species.

OCTAHEDRAL DIAGRAM

TETRAHEDRAL DIAGRAM

5. OXIDATION-REDUCTION (8 points total)

When a ruthenium chloride solution was electrolyzed for 32 minutes with a 60-mA current, 40. mg of ruthenium was deposited. <u>Calculate</u> the oxidation number of Ru in the ruthenium chloride solution.

6. REDOX AND THERMODYNAMICS (12 points total)

Given that the standard reduction potentials for vitamin B_{12} and the protein flavodoxin are

Vitamin B₁₂
$$E^{\circ}$$
 = - 0.526 V
Flavodoxin E° = - 0.230 V

(a) (8 points) Calculate ΔG° in kJ for the one-electron reduction of vitamin B_{12} by flavodoxin.

(b) (4 points) <u>State</u> whether vitamin B_{12} or flavodoxin is the better reducing agent. <u>Explain your answer.</u>

Ketoacidosis is a serious medical condition caused by a build-up of ketone bodies. A 0.50~M solution of one of those ketone bodies, acetoacetic acid, is found to have a pH of 1.95. Determine the K_a of acetoacetic acid. Show all work.

8. ACID-BASE TITRATION CURVES (5 points total)

On the axes below, $\underline{\text{draw}}$ a titration curve for a weak acid/strong base titration. (a) $\underline{\text{Mark}}$ the equivalence point, (b) $\underline{\text{mark}}$ the half-equivalence point, (c) $\underline{\text{mark}}$ the buffering region with a double headed arrow, and (d) $\underline{\text{indicate}}$ whether the pH at the equivalence point should be < 7, 7, or > 7.

9. BUFFERS (10 points total)

Your UROP supervisor wants you to make a buffer solution with an equal number of moles of acetic acid (CH₃COOH) and acetate (CH₃COOT). <u>Calculate</u> to **one significant figure** the minimum number of **moles** of each that you must use to prevent a change in the pH of more than 0.20 pH units after the addition of 1.0 mL of 5.00 M HCl (aq) to 100.0 mL of the buffer solution, generating 101.0 mL of solution. The K_a of acetic acid is 1.8 x 10⁻⁵.

10. THERMODYNAMICS (12 points total)

Without doing any calculations, predict the answers to the following questions for this reaction: $Cl_2(g) \rightarrow 2 Cl(g)$

(a) (4 points) Predict if ΔH° for this reaction is endothermic, exothermic, or zero. Explain your answer.

(b) (4 points) Predict if ΔS° is positive, negative, or zero. Explain your answer.

(c) (4 points) <u>Predict</u> whether this reaction is spontaneous at all temperatures. <u>Explain your answer</u>.

11. MOLECULAR ORBITAL THEORY (26 points total)

(a) (4 points) (i) <u>Briefly compare</u> in words or pictures the probability density (ψ^2) between two nuclei for a σ orbital with that of a σ^* orbital. (ii) <u>Explain</u> how this difference in probability density relates to the relative energies of electrons in these two types of molecular orbitals.

(b) (10 points) (i) $\underline{\text{Draw}}$ the MO diagram for the valence electrons of N_2 . $\underline{\text{Label}}$ the (ii) atomic and (iii) molecular orbitals, including the x, y, and z designations where appropriate. (iii) $\underline{\text{Fill}}$ both the atomic and molecular orbitals with the proper number of electrons. (iv) $\underline{\text{Draw}}$ and $\underline{\text{label}}$ the Energy axis. Use the full space available to spread out your energy levels.
(c) (3 points) Write the valence electron configuration for N_2 from the MO diagram above.
(d) (3 points) <u>Calculate</u> the bond order for N_2 based on the MO diagram above.
(e) (6 points) (i) <u>Arrange</u> the following from lowest to highest ionization energy: N , N_2 , N_2^-
Lowest IE Highest IE
(ii) Explain your order:

12. LEWIS STRUCTURES, VSEPR, and HYDRIBIZATION (2	25 points t	otal)
---	-------------	-------

(a) For S l	F4 (11	points)
--------------------	--------	---------

(i) (4 points) $\underline{\text{Draw}}$ the most stable Lewis structure for SF₄ including lone pairs. $\underline{\text{Indicate}}$ any non-zero formal charge(s) and $\underline{\text{draw}}$ any resonance structures if appropriate.

(::)	(2	mainta)	CNI	:.			
(11)	(3	points)	SN	1S			

- (iii) (2 points) The geometry of the molecule is (example: linear).
- (iv) (2 points) Circle the expected F-S-F angle or angles

(b) For NH_3 (14 points)

(i) (4 points) <u>Draw</u> the most stable Lewis structure for NH₃ including lone pairs. <u>Indicate</u> any non-zero formal charge(s) and <u>draw</u> any resonance structures if appropriate.

- (ii) (2 points) The geometry of the molecule is ______ (example: linear)
- (iii) (2 points) Circle the expected H-N-H angle or angles:

(iv) (6 points) Write the symmetry of an N-H bond (example σ), give the hybrid or atomic orbital (with their principle quantum numbers) that overlap to form each bond. Where appropriate, include the x,y,z designations.

13. ORBITALS AND PERIODIC TRENDS (12 points total)

<u>Circle</u> the correct italicized answer and <u>briefly explain your choice</u>.

(a) A 1s orbital of a multi-electron atom is <i>lower higher</i> in energy than the 1s orbital of hydrogen. Explanation:
(b) In general, ionization energy increases decreases down a column of the periodic table. Explanation:
(c) Low electronegativity is associated with low electron affinity and <i>high low</i> ionization energy. Explanation:

14. PHOTOELECTRIC EFFECT (12 points total) Explain the following observations.

(a) (4 points) Classical physics predicted that the number of electrons ejected from a metal surface would be unaffected by increasing the intensity of the light. However, experiment showed that an increased number of electrons were ejected as the intensity of light was increased. Explain this experimental observation.
(b) (4 points) Classical physics predicted that the kinetic energy of electrons ejected from a metal surface would increase as the intensity of light increased. However, experiment showed that the kinetic energy of the electrons did not change as the intensity of light was increased. (i) Identify a property of light that was found by experiment to affect the kinetic energy of the ejected electrons and (ii) briefly explain why this property has such an effect.
(c) (4 points) Explain what threshold frequency is and why the value is dependent on the metal in question.

15. PHOTON EMISSION (8 points total)

A new prototype UV light source emits photons at a wavelength of 388.65 nm.

(a) (4 points) <u>Calculate</u> the energy per photon in **Joules** to **four significant figures**.

(b) (4 points) $\underline{\text{Calculate}}$ the total energy (in **kJ** to **three significant figures**) associated with the emission of 0.0166 moles of photons at this wavelength.

$c = 2.9979 \times 10^8 \text{ m/s}$	c = 2	.9979	x 1	08	m/s
--------------------------------------	-------	-------	-----	----	-----

$$h = 6.6261 \times 10^{-34} \text{ J s}$$

$$N_A = 6.02214 \times 10^{23} \text{ mol}^{-1}$$

$$1 \text{ amu} = 1.66054 \times 10^{-27} \text{ kg}$$

$$m_e = 9.10939 \times 10^{-31} \text{ kg}$$

$$R = 8.314 \text{ J/(K mol)} R = 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$$

$$R_H = 2.17987 \times 10^{-18} J$$

$$e = 1.60218 \times 10^{-19} \text{ C}$$
 1 $eV = 1.60218 \times 10^{-19} \text{ J}$

$$\varepsilon_0 = 8.8542 \text{ x } 10^{-12} \text{ C}^2 \text{J}^{-1} \text{m}^{-1}$$

$$K_w = 1.00 \times 10^{-14} \& 14.00 = pH + pOH at 25.0$$
°C

$$\Im$$
 (Faraday's constant) = 96,485 C mol⁻¹

Electromagnetic Spectrum:
Violet ~ 400-430 nm
Blue ~ 431-490 nm
Green ~ 491-560 nm
Yellow ~ 561-580 nm
Orange ~ 581-620 nm
Red ~ 621-700 nm

Complementary Colors: red/green, blue/orange, yellow/violet

$$I^- < Br^- < Cl^-$$
 (weak field ligands)

$$1 \text{ C} \cdot \text{V} = 1 \text{ J}$$
 $1 \text{ J} = 1 \text{ kgm}^2 \text{s}^{-2}$

$$1 J = 1 kgm^2 s^{-2}$$

$$1A = 1C/s$$

$$1W = 1 J/s$$

$$ln = 2.3025851log$$

$$x = [-b \pm (b^2 - 4ac)^{1/2}]/2a$$
 $ax^2 + bx + c = 0$

K.E. =
$$\frac{1}{2}$$
 mv² p = mv $\lambda = \frac{h}{p}$

$$E = hv = hc/\lambda$$
 $c = v\lambda$

$$E_{\rm n} = -\frac{Z^2 R_{\rm H}}{n^2}$$
 $E_{\rm nl} = -\frac{Z_{\rm eff}^2 R_{\rm H}}{n^2}$

$$E_{\rm nl} = -\frac{Z_{\rm eff}^2 R_{\rm H}}{n^2}$$

for
$$n_f \le n_i \dots$$

for
$$n_f > n_i \dots$$

$$\nu = \frac{Z^2 R_{\rm H}}{h} \left(\frac{1}{n_{\rm f}^2} - \frac{1}{n_{\rm i}^2} \right) \qquad \nu = \frac{Z^2 R_{\rm H}}{h} \left(\frac{1}{n_{\rm i}^2} - \frac{1}{n_{\rm f}^2} \right)$$

$$U(r) = (z_1 z_2 e^2)/(4\pi \varepsilon_0 r)$$

Electronegativity =
$$(IE + EA)/2$$

$$\Delta H_r^{\circ} = \Sigma \Delta H_B (reactants) - \Sigma \Delta H_B (products)$$

$$\Delta H_r^{\circ} = \Sigma \Delta H_f^{\circ}$$
 (products) - $\Sigma \Delta H_f^{\circ}$ (reactants)

$$\Delta S_r^{\circ} = \Sigma S^{\circ}$$
 (products) - ΣS° (reactants)

$$\Delta G_r^{\circ} = \Sigma \Delta G_f^{\circ}$$
 (products) - ΣG_f° (reactants)

$$\Lambda G = \Lambda H - T \Lambda S$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G^{\circ} = -RT \ln K$$

$$\Delta G = RT \ln Q/K$$

$$\ln (K_2/K_1) = -(\Delta H^{\circ}/R)(1/T_2 - 1/T_1)$$

$$PV = nRT$$

$$s = k_H P$$

$$pH \approx pK_a - \log([HA]/[A])$$

$$pH = -log [H_3O^+]$$
 $pOH = -log [OH^-]$

$$K_w = K_a K_b$$
 $pK = -log K$

$$O = It$$

$$\Delta G^{\circ}_{\text{cell}} = -(n)(\Im) \Delta E^{\circ}_{\text{cell}}$$

$$\Delta E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode})$$

$$\Delta E^{\circ} = E^{\circ}(\text{reduction}) - E^{\circ}(\text{oxidation})$$

$$\Delta E_{\text{cell}} = E_{\text{cell}}^{\circ} - (RT/n\Im) \ln Q$$

$$\Delta E_{\text{cell}} = E_{\text{cell}}^{\circ} - [(0.025693 \text{ V})(\ln \text{Q})/\text{n}] \text{ at } 25.0^{\circ}\text{C}$$

$$\ln K = (n\Im/RT) \Delta E^{\circ}$$

$$A = A_o e^{-kt}$$
 $N = N_o e^{-kt}$ $A = kN$

$$[A] = [A]_o e^{-kt} \qquad \qquad t_{1/2} = \ln 2 \ / \ k$$

$$t_{1\!/_{\!2}}=ln2\ /\ k$$

$$1/[A] = 1/[A]_o + kt$$
 $t_{\frac{1}{2}} = 1 / k[A]_o$

$$t_{\frac{1}{2}} = 1 / k[A]_{o}$$

$$ln(k) = ln(A) - E_a/RT$$
 $k = Ae^{-(E_a/RT)}$

$$k = Ae^{-(E_a/RT)}$$

$$ln(k_2/k_1) = -(E_a/R) (1/T_2 - 1/T_1)$$

$$d[P]/dt = (k_2[E]_o[S])/([S] + K_m)$$

$$V_{max} = k_2[E]_o$$

3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17 17 18 14 15 15 16 17 17 18 17 18 18 18 18												_						
3	18 ^a VIIIA b	Noble Gases 2 He 4.003	10 Ne 20.179	18 Ar	39.948	36	83.80	54		98	Rn (222)							_
1	17 VIIA		9 F 18.998	17 Cl	35.453	35 Br	79.904	53	I 126.904	85	At (210)			ı	17	Lu 174.967	103	(260)
11 12 13 14 14 14 14 14 14 14	16 VIA	tals	8 O 15.999	16 S	32.06	34	3e 78.96	52	Te 127.60	84	Po (209)			ı	70	Yb 173.04	102	(259)
11 12 13 14 14 14 14 14 14 14	15 VA	Nonme	7 N 14.007	15 P	30.974	33	74.922	51	Sb 121.75	83	Bi 208 98			ı	69	Tm 168.934	101	(258)
3	14 IVA	The	6 C 12.011	14 Si	28.086	32	72.59	50	Sn 118.69	82	Pb 207.2	!		ı	89	Er 167.26	100	(257)
3	13 IIIA		5 B 10.81	13 A	286.982	31	69.72	49	In 114.82	81	T1			ı	29	Ho 164.930	66	(252)
3	12 IIB					30	65.38	48	Cd 112.41	08	Hg 200 59			tals	99	Dy 162.50	86	(251)
3	11 IB				ı	29	63.546	47	Ag 107.868	79	Au 196 966			tion Me	65	Tb 158.925	97	(247)
3	10				ı	28 Ni:	58.69	46	Pd 106.42	78		_		er Transi	49	Gd 157.25	96	Cm (247)
3	9 VIIIB				ts	27	58.933	45	Rh 102.906	77	Ir 192 22			Inne	63	Eu 151.96	95	(243)
3 4 5 6 IIIB IVB VIB VIB 21 22 23 24 8c Ti V Cr 44.956 47.88 50.942 51.996 39 40 41 42 Y Ar Nh Mo 88.906 91.224 92.906 95.94 57 *72 73 74 La Hf Ta W 138.906 178.49 180.948 183.85 89 † 104 105 106 Ac Unq Unh Unh 227.028 (261) (262) (263) 140.12 140.908 144.24 90 91 91 Th Pa U 17h Pa U 17h Pa U 140.12 140.908 144.24 90 91 U 17h Pa U 14h Pa U	8				Element	26 Fe	55.847	44		9/	Os 190.2			ı	62	Sm 150.36	94	ru (244)
3 4 5 6 IIIB IVB VIB VIB 21 22 23 24 8c Ti V Cr 44.956 47.88 50.942 51.996 39 40 41 42 Y Ar Nh Mo 88.906 91.224 92.906 95.94 57 *72 73 74 La Hf Ta W 138.906 178.49 180.948 183.85 89 † 104 105 106 Ac Unq Unh Unh 227.028 (261) (262) (263) 140.12 140.908 144.24 90 91 91 Th Pa U 17h Pa U 17h Pa U 140.12 140.908 144.24 90 91 U 17h Pa U 14h Pa U	7 VIIB				ansition	25 Mn	54.938	43	Tc (98)	75	Re 186.21			ı	61	Pm (145)	93	237.048
3 4 5 IIIB IVB VB 1	6 VIB				Tr	24 2.	51.996	42	Mo 95.94	74	W 183 85	106 Unh	(22)	ı	09	Nd 144.24	92	
3 4 IIIB IVB IVB 21 22 Sc Ti 44.956 47.88 39 40 Y Zr 88.906 91.224 57 *72 La Hf 138.905 178.49 89 †104 Ac Unq 227.028 (261) Es Ce les Ce Th	5 VB				ı	23 V	50.942	41	Nb 92.906	73	Ta 180 948	105 Unp	(101)	ı	59	Pr 140.908	91	
3 IIIIB Sc 21 Sc 39 Y 88.906 57 La 138.905 89 Ac Ac	4 IVB				ı	22	47.88	40	Zr 91.224	* 72	Hf 178 49	† 104 Unq		ı	58	Ce 140.12	8 F	232.038
	3 IIIB					21 Sc	sc 44.956	39	Y 88.906	57	La 138 905	_						
11A IIIB	2 IIA	ctive	4 Be 9.012	12 Mg	24.305	20	40.08	38	Sr 87.62	56	Ba 137 33	88 Ra				anthani	:	Acumiaes
1	1 IA	The A Mei	3 Li 6.941	11 Na	22.990	19	39.098	37	Rb 85.468	55	Cs 132 905		7			I *	+	7

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.