Final Exam

Write your name and your TA's name below. Do not open the exam until the start of the exam is announced. 1) Read each part of a problem thoroughly. Many of a problem's latter parts can be solved without having solved earlier parts. If you need a numerical result that you were not successful in obtaining for the execution of a latter part, make a physically reasonable approximation for that quantity. 2) Significant figure usage and units must be correct. 3) If you don't understand what the problem is requesting, raise your hand. 4) Physical constants, formulas and a periodic table are given on the last 2 pages. You may detach these pages once the exam has started.

PAGE 2

PAGE 4
PAGE 5
PAGE 6
PAGE 6
PAGE 7
PAGE 8
PAGE 8
PAGE 9
PAGE 10
PAGE 10
PAGE 12 12. LEWIS STRUCTURES, VSEPR \& HYBRIDIATION
PAGE 13
PAGE 13
PAGE 14
15. PHOTON EMISSION

TOTAL
(200 points) \qquad

TA \qquad Name \qquad

1. KINETICS AND EQUILIBRIUM (29 points total)

For a reversible, one step reaction $2 \mathrm{~A} \rightleftharpoons \mathrm{~B}+\mathrm{C}$, the rate constant for the forward reaction is $406 \mathrm{M}^{-1} \mathrm{~min}^{-1}$ and the rate constant for the reverse reaction is $244 \mathrm{M}^{-1} \mathrm{~min}^{-1}$. The activation energy for the forward reaction is $26.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and that for the reverse reaction is $42.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(a) (5 points) On the axes below, draw a reaction coordinate diagram for this reaction, showing the curve, and labeling (i) $\Delta \mathrm{E}$, (ii) $\mathrm{E}_{\mathrm{a}, \mathrm{f}}$, and (iii) $\mathrm{E}_{\mathrm{a}, \mathrm{r}}$. State whether the reaction is endothermic or exothermic.
P.E.

$$
\text { reaction coordinate } \rightarrow
$$

(b) (4 points) Calculate $\Delta \mathrm{E}$ for this reaction $(2 \mathrm{~A} \rightleftharpoons \mathrm{~B}+\mathrm{C})$. Show your work.
(c) (4 points) Calculate the equilibrium constant (K) for this reaction $(2 \mathrm{~A} \rightleftharpoons \mathrm{~B}+\mathrm{C})$. Show your work.
(d) (6 points) (i) Predict the effect of raising the temperature on the forward rate constant ($\mathbf{k}_{\mathbf{1}}$), and (ii) compare it to the effect of raising the temperature on the reverse rate constant $\left(\mathbf{k}_{\mathbf{-}}\right)$. Explain your answer.
(e) (4 points) Predict the effect of raising the temperature on the equilibrium constant (K). Explain your answer.
(f) (6 points) On the axes below, draw a single reaction coordinate diagram, that includes both a catalyzed (dashed line) and a noncatalyzed (solid line) reaction curve, indicating the effect of adding a catalyst to the reaction. Briefly explain what a catalyst does.

2. ENZYME KINETICS (7 points total)

The enzyme penicillinase degrades the antibiotic penicillin, leading to bacterial resistance. The Michaelis-Menten constants for this enzyme and substrate are $\mathrm{K}_{\mathrm{m}}=5 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$ and $\mathrm{k}_{2}=2 \times 10^{3} \mathrm{~s}^{-1}$.
(a) (4 points) Calculate the maximum rate of this reaction if the total enzyme concentration is 7×10^{-5} M.
(b) (3 points) Find the substrate concentration for which the rate will be half of that calculated in part (a). No need to show work.

3. REACTION MECHANISMS (8 points total)

For the reaction $2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$, write the rate law for the formation of NO_{2} using the following mechanistic proposal and the steady state approximation. Be sure to eliminate intermediates from the rate expression. Do not make any assumptions about fast or slow steps (i.e. do not simplify your expression by assuming anything about the relative magnitude of k_{-1} and k_{2}). Show all work for full credit.

Step 1

$$
\begin{gathered}
\mathrm{NO}+\mathrm{NO} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{=}} \mathrm{N}_{2} \mathrm{O}_{2} \\
\mathrm{k}_{2} \\
\mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
\end{gathered}
$$

4. TRANSITION METALS (16 points total)

Ni^{2+} in a coordination complex is paramagnetic. (a) Draw the crystal field splitting diagrams showing relative splitting energies for an octahedral crystal field and a tetrahedral crystal field, labeling the diagrams with the (b) names of the d-orbitals, and (c) and symbols for octahedral and tetrahedral field splitting energy. (e) Fill both diagrams with the proper number of electrons and state below each diagram whether the geometry is consistent with a paramagnetic species.

5. OXIDATION-REDUCTION (8 points total)

When a ruthenium chloride solution was electrolyzed for 32 minutes with a $60-\mathrm{mA}$ current, $40 . \mathrm{mg}$ of ruthenium was deposited. Calculate the oxidation number of Ru in the ruthenium chloride solution.

6. REDOX AND THERMODYNAMICS (12 points total)

Given that the standard reduction potentials for vitamin B_{12} and the protein flavodoxin are
Vitamin $\mathrm{B}_{12} E^{\circ}=-0.526 \mathrm{~V}$
Flavodoxin $E^{\circ}=-0.230 \mathrm{~V}$
(a) (8 points) Calculate $\Delta \mathrm{G}^{\circ}$ in $\mathbf{k J}$ for the one-electron reduction of vitamin B_{12} by flavodoxin.
(b) (4 points) State whether vitamin B_{12} or flavodoxin is the better reducing agent. Explain your answer.

7. ACID-BASE EQUILIBRIA (10 points total)

Ketoacidosis is a serious medical condition caused by a build-up of ketone bodies. A 0.50 M solution of one of those ketone bodies, acetoacetic acid, is found to have a pH of 1.95 . Determine the K_{a} of acetoacetic acid. Show all work.

8. ACID-BASE TITRATION CURVES (5 points total)

On the axes below, draw a titration curve for a weak acid/strong base titration. (a) Mark the equivalence point, (b) mark the half-equivalence point, (c) mark the buffering region with a double headed arrow, and (d) indicate whether the pH at the equivalence point should be $<7,7$, or >7.

$$
\mathrm{pH}
$$

9. BUFFERS (10 points total)

Your UROP supervisor wants you to make a buffer solution with an equal number of moles of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ and acetate $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$. Calculate to one significant figure the minimum number of moles of each that you must use to prevent a change in the pH of more than 0.20 pH units after the addition of 1.0 mL of $5.00 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ to 100.0 mL of the buffer solution, generating 101.0 mL of solution. The K_{a} of acetic acid is 1.8×10^{-5}.

10. THERMODYNAMICS (12 points total)

Without doing any calculations, predict the answers to the following questions for this reaction:

$$
\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{~g})
$$

(a) (4 points) Predict if $\Delta \mathrm{H}^{\circ}$ for this reaction is endothermic, exothermic, or zero. Explain your answer.
(b) (4 points) Predict if $\Delta \mathrm{S}^{\circ}$ is positive, negative, or zero. Explain your answer.
(c) (4 points) Predict whether this reaction is spontaneous at all temperatures. Explain your answer.

11. MOLECULAR ORBITAL THEORY (26 points total)

(a) (4 points) (i) Briefly compare in words or pictures the probability density $\left(\psi^{2}\right)$ between two nuclei for a σ orbital with that of a σ^{*} orbital. (ii) Explain how this difference in probability density relates to the relative energies of electrons in these two types of molecular orbitals.
(b) (10 points) (i) Draw the MO diagram for the valence electrons of \mathbf{N}_{2}. Label the (ii) atomic and (iii) molecular orbitals, including the x, y, and z designations where appropriate. (iii) Fill both the atomic and molecular orbitals with the proper number of electrons. (iv) Draw and label the Energy axis. Use the full space available to spread out your energy levels.
(c) (3 points) Write the valence electron configuration for N_{2} from the MO diagram above.
(d) (3 points) Calculate the bond order for N_{2} based on the MO diagram above.
(e) (6 points) (i) Arrange the following from lowest to highest ionization energy: $\mathrm{N}, \mathrm{N}_{2}, \mathrm{~N}_{2}{ }^{-}$
Lowest IE
Highest IE
(ii) Explain your order:
12. LEWIS STRUCTURES, VSEPR, and HYDRIBIZATION (25 points total)
(a) $\mathrm{For}^{\mathrm{SF}_{4}}$ (11 points)
(i) (4 points) Draw the most stable Lewis structure for SF_{4} including lone pairs. Indicate any non-zero formal charge(s) and draw any resonance structures if appropriate.
(ii) (3 points) SN is \qquad .
(iii) (2 points) The geometry of the molecule is \qquad (example: linear).
(iv) (2 points) Circle the expected F-S-F angle or angles
$<90 ; 90^{\circ} ;>90 ;<109.5^{\circ} ; 109.5^{\circ} ;>109.5^{\circ} ;<120^{\circ} ; 120^{\circ} ;>120^{\circ}$
(b) For NH_{3} (14 points)
(i) (4 points) Draw the most stable Lewis structure for NH_{3} including lone pairs. Indicate any non-zero formal charge(s) and draw any resonance structures if appropriate.
(ii) (2 points) The geometry of the molecule is \qquad (example: linear)
(iii) (2 points) Circle the expected $\mathrm{H}-\mathrm{N}-\mathrm{H}$ angle or angles:
$<90 ; 90^{\circ} ;>90 ;<109.5^{\circ} ; 109.5^{\circ} ;>109.5^{\circ} ;<120^{\circ} ; 120^{\circ} ;>120^{\circ}$
(iv) (6 points) Write the symmetry of an N-H bond (example σ), give the hybrid or atomic orbital (with their principle quantum numbers) that overlap to form each bond. Where appropriate, include the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ designations.
13. ORBITALS AND PERIODIC TRENDS (12 points total)

Circle the correct italicized answer and briefly explain your choice.
(a) A 1 s orbital of a multi-electron atom is lower higher in energy than the 1 s orbital of hydrogen. Explanation:
(b) In general, ionization energy increases decreases down a column of the periodic table. Explanation:
(c) Low electronegativity is associated with low electron affinity and high low ionization energy. Explanation:

14. PHOTOELECTRIC EFFECT (12 points total)

Explain the following observations.
(a) (4 points) Classical physics predicted that the number of electrons ejected from a metal surface would be unaffected by increasing the intensity of the light. However, experiment showed that an increased number of electrons were ejected as the intensity of light was increased. Explain this experimental observation.
(b) (4 points) Classical physics predicted that the kinetic energy of electrons ejected from a metal surface would increase as the intensity of light increased. However, experiment showed that the kinetic energy of the electrons did not change as the intensity of light was increased. (i) Identify a property of light that was found by experiment to affect the kinetic energy of the ejected electrons and (ii) briefly explain why this property has such an effect.
(c) (4 points) Explain what threshold frequency is and why the value is dependent on the metal in question.
15. PHOTON EMISSION (8 points total)

A new prototype UV light source emits photons at a wavelength of 388.65 nm .
(a) (4 points) Calculate the energy per photon in Joules to four significant figures.
(b) (4 points) Calculate the total energy (in $\mathbf{k J}$ to three significant figures) associated with the emission of 0.0166 moles of photons at this wavelength.

$\mathrm{c}=2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}$	$\mathrm{U}(\mathrm{r})=\left(\mathrm{z}_{1} \mathrm{Z}_{2} \mathrm{e}^{2}\right) /\left(4 \pi \varepsilon_{0} \mathrm{r}\right)$
$\mathrm{h}=6.6261 \times 10^{-34} \mathrm{~J} \mathrm{~s}$	Electronegativity $=(\mathrm{IE}+\mathrm{EA}) / 2$
$\mathrm{N}_{\mathrm{A}}=6.02214 \times 10^{23} \mathrm{~mol}^{-1}$	
$1 \mathrm{amu}=1.66054 \times 10^{-27} \mathrm{~kg}$	$\Delta \mathrm{H}_{\mathrm{r}}{ }^{\circ}=\Sigma \Delta \mathrm{H}_{\mathrm{B}}$ (reactants) $-\Sigma \Delta \mathrm{H}_{\mathrm{B}}$ (products) $\Delta \mathrm{H}_{\mathrm{r}}{ }^{\circ}=\Sigma \Delta \mathrm{H}_{\mathrm{f}}{ }^{\circ}$ (products) $-\Sigma \Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ (reactants)
$\mathrm{m}_{\mathrm{e}}=9.10939 \times 10^{-31} \mathrm{~kg}$	$\Delta \mathrm{S}_{\mathrm{r}}{ }^{\circ}=\Sigma \mathrm{S}^{\circ}$ (products) $-\Sigma \mathrm{S}^{\circ}$ (reactants)
$\mathrm{R}=8.314 \mathrm{~J} /(\mathrm{K} \mathrm{mol}) \mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$	$\Delta \mathrm{G}_{\mathrm{r}}{ }^{\circ}=\Sigma \Delta \mathrm{G}_{\mathrm{f}}{ }^{\circ}$ (products) $-\Sigma \mathrm{G}_{\mathrm{f}}{ }^{\circ}$ (reactants)
$\mathrm{R}_{\mathrm{H}}=2.17987 \times 10^{-18} \mathrm{~J}$	$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
$\mathrm{e}=1.60218 \times 10^{-19} \mathrm{C} \quad 1 \mathrm{eV}=1.60218 \times 10^{-19} \mathrm{~J}$	$\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \ln \mathrm{Q}$
$\varepsilon_{0}=8.8542 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$	$\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{K}$
$\mathrm{K}_{\mathrm{w}}=1.00 \times 10^{-14} \& 14.00=\mathrm{pH}+\mathrm{pOH}$ at $25.0^{\circ} \mathrm{C}$	$\Delta \mathrm{G}=\mathrm{RT} \ln \mathrm{Q} / \mathrm{K}$
\mathfrak{J} (Faraday's constant) $=96,485 \mathrm{C} \mathrm{mol}^{-1}$	$\ln \left(\mathrm{K}_{2} / \mathrm{K}_{1}\right)=-\left(\Delta \mathrm{H}^{\circ} / \mathrm{R}\right)\left(1 / \mathrm{T}_{2}-1 / \mathrm{T}_{1}\right)$
Electromagnetic Spectrum:	$\mathrm{PV}=\mathrm{nRT}$
Violet ~400-430 nm Blue ~431-490 nm	
Green $\sim 491-560 \mathrm{~nm}$	
Yellow ~ 561-580 nm	$\mathrm{pH} \approx \mathrm{pK}_{\mathrm{a}}-\log \left([\mathrm{HA}] /\left[\mathrm{A}^{-}\right]\right)$
Orange $\sim 581-620 \mathrm{~nm}$	$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
Red ~621-700 nm	pH $-\log \left[\mathrm{H}_{3} \mathrm{O}\right] \quad \mathrm{pOH}-\log [\mathrm{OH}$
Complementary Colors: red/green, blue/orange, yellow/violet	$\mathrm{K}_{\mathrm{w}}=\mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}} \quad \mathrm{pK}=-\log \mathrm{K}$
	$\mathrm{Q}=\mathrm{It}$
$\mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-} \quad$ (weak field ligands) $<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}$ (intermediate)	$\Delta \mathrm{G}^{\circ}{ }_{\text {cell }}=-(\mathrm{n})(\mathfrak{F}) \Delta E^{\circ}{ }_{\text {cell }}$
$<\mathrm{F}^{-}<\mathrm{OH}^{-}<\mathrm{H}_{2} \mathrm{O}$ (intermediate)	$\Delta \mathrm{G}^{\text {cell }}$-(n)() $\Delta E^{\text {cell }}$
$<\mathrm{NH}_{3}<\mathrm{CO}<\mathrm{CN}^{-}$(strong field ligands)	$\Delta E^{\circ}($ cell $)=E^{\circ}($ cathode $)-E^{\circ}($ anode $)$
$1 \mathrm{C} \cdot \mathrm{V}=1 \mathrm{~J} \quad 1 \mathrm{~J}=1 \mathrm{kgm}^{2} \mathrm{~s}^{-2}$	$\Delta E^{\circ}=E^{\circ}$ (reduction) $-E^{\circ}$ (oxidation)
$1 \mathrm{~A}=1 \mathrm{C} / \mathrm{s} \quad 1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$	$\Delta E_{\text {cell }}=E^{\circ}{ }_{\text {cell }}-(\mathrm{RT} / \mathrm{n} \Im) \ln \mathrm{Q}$
$\ln =2.3025851 \mathrm{log}$	$\Delta E_{\text {cell }}=E^{\circ}$ cell $-[(0.025693 \mathrm{~V})(\operatorname{lnQ}) / \mathrm{n}]$ at $25.0^{\circ} \mathrm{C}$
$1 \mathrm{~Bq}=1$ nuclei/sec	$\ln \mathrm{K}=(\mathrm{n} \Im / \mathrm{RT}) \Delta E^{\circ}$
$x=\left[-b \pm\left(b^{2}-4 a c\right)^{1 / 2}\right] / 2 a \quad a x^{2}+b x+c=0$	$\mathrm{A}=\mathrm{A}_{0} \mathrm{e}^{-\mathrm{kt}} \quad \mathrm{N}=\mathrm{N}_{\mathrm{o}} \mathrm{e}^{-\mathrm{kt}} \quad \mathrm{A}=\mathrm{kN}$
$\text { K.E. }=1 / 2 \mathrm{mv}^{2} \quad \mathrm{p}=\mathrm{mv} \quad \lambda=\frac{n}{\mathrm{p}}$	$[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{kt}} \quad \mathrm{t}_{1 / 2}=\ln 2 / \mathrm{k}$
$\mathrm{E}=\mathrm{h} v=\mathrm{hc} / \lambda \quad \mathrm{c}=\nu \lambda$	$1 /[\mathrm{A}]=1 /[\mathrm{A}]_{\mathrm{o}}+\mathrm{kt} \quad \mathrm{t}_{1 / 2}=1 / \mathrm{k}[\mathrm{A}]_{\mathrm{o}}$
$E_{n}=-\frac{Z^{2} R_{H}}{n^{2}} \quad E_{n l}=-\frac{Z_{\text {eff }}^{2} R_{H}}{n^{2}}$	$\ln (\mathrm{k})=\ln (\mathrm{A})-\mathrm{E}_{\mathrm{a}} / \mathrm{RT} \quad \mathrm{k}=\mathrm{Ae}^{-\left(\mathrm{E}_{\mathrm{a}} \mathrm{RT}\right)}$
for $\mathrm{n}_{\mathrm{f}}<\mathrm{n}_{\mathrm{i}} \ldots \ldots$. for $\mathrm{n}_{\mathrm{f}}>\mathrm{n}_{\mathrm{i}} \ldots \ldots$	$\ln \left(\mathrm{k}_{2} / \mathrm{k}_{1}\right)=-\left(\mathrm{E}_{\mathrm{a}} / \mathrm{R}\right)\left(1 / \mathrm{T}_{2}-1 / \mathrm{T}_{1}\right)$
$v=\frac{\mathrm{Z}^{2} \mathrm{R}_{\mathrm{H}}}{\mathrm{~h}}\left(\frac{1}{\mathrm{n}^{2}}-\frac{1}{\mathrm{n}^{2}}\right) \quad v=\frac{\mathrm{Z}^{2} \mathrm{R}_{\mathrm{H}}}{\mathrm{~h}}\left(\frac{1}{\mathrm{n}^{2}}-\frac{1}{\mathrm{n}^{2}}\right)$	$d[\mathrm{P}] / \mathrm{dt}=\left(\mathrm{k}_{2}[\mathrm{E}]_{0}[\mathrm{~S}]\right) /\left([\mathrm{S}]+\mathrm{K}_{\mathrm{m}}\right)$
	$\mathrm{V}_{\text {max }}=\mathrm{k}_{2}[\mathrm{E}]_{\mathrm{o}}$

Inner Transition Metals													
58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

MIT OpenCourseWare
https://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

