Write your name and your TA's name below. **Do not open the exam until the start of the exam is announced.** 1) Read each part of a problem thoroughly. Many of a problem's latter parts can be solved without having solved earlier parts. If you need a numerical result that you were not successful in obtaining for the execution of a latter part, make a physically reasonable approximation for that quantity. 2) Significant figure usage and units must be correct. 3) If you don't understand what the problem is requesting, raise your hand. 4) Physical constants, formulas and a periodic table are given on the last 2 pages. You may detach these pages **once the exam has started**.

PAGE 2	1. KINETICS & EQUILIBRIUM	(29 points)
PAGE 4	2. ENZYME KINETICS	(7 points)
PAGE 5	3. REACTION MECHANISMS	(8 points)
PAGE 6	4. TRANSITION METALS	(16 points)
PAGE 6	5. OXIDATION-REDUCTION	(8 points)
PAGE 7	6. REDOX AND THERMODYNAMICS	(12 points)
PAGE 8	7. ACID-BASE EQUILIBRIA	(10 points)
PAGE 8	8. ACID-BASE TITRATION CURVES	(5 points)
PAGE 9	9. BUFFERS	(10 points)
PAGE 10	10. THERMODYNAMICS	(12 points)
PAGE 10	11. MOLECULAR ORBITAL THEORY	(26 points)
PAGE 12	12. LEWIS STRUCTURES, VSEPR & HYBRIDIATION	(25 points)
PAGE 13	13. ORBITALS AND PERIODIC TRENDS	(12 points)
PAGE 13	14. PHOTOELECTRIC EFFECT	(12 points)
PAGE 14	15. PHOTON EMISSION	(8 points)

TOTAL

(200 points) _____

ТА	Name	

1. KINETICS AND EQUILIBRIUM (29 points total)

For a reversible, one step reaction $2A \implies B + C$, the rate constant for the forward reaction is 406 M⁻¹ min⁻¹ and the rate constant for the reverse reaction is 244 M⁻¹ min⁻¹. The activation energy for the forward reaction is 26.2 kJ mol⁻¹ and that for the reverse reaction is 42.4 kJ mol⁻¹.

(a) (5 points) On the axes below, <u>draw</u> a reaction coordinate diagram for this reaction, <u>showing</u> the curve, and <u>labeling</u> (i) ΔE , (ii) $E_{a,f}$, and (iii) $E_{a,r}$. <u>State</u> whether the reaction is endothermic or exothermic.

reaction coordinate \rightarrow

(b) (4 points) <u>Calculate</u> ΔE for this reaction (2A \implies B + C). Show your work.

-16.2 kJ/mol

(c) (4 points) <u>Calculate</u> the equilibrium constant (K) for this reaction ($2A \implies B + C$). Show your work.

K = **1**.**66**

(d) (6 points) (i) <u>Predict</u> the effect of raising the temperature on the forward rate constant (k_1) , and (ii) <u>compare</u> it to the effect of raising the temperature on the reverse rate constant (k_1) . <u>Explain your</u> <u>answer</u>.

Both k's will increase because more molecules will have the energy necessary to overcome the Ea barriers. $k_{reverse}$ (k₋₁) will increase more because the Ea barrier is higher.

(e) (4 points) <u>Predict</u> the effect of raising the temperature on the equilibrium constant (K). <u>Explain</u> your answer.

K will decrease.

Le Chatelier's ~ for exothermic reaction, shift to reactant (absorb heat)

OR

K will decrease since k_{-1} (reverse) increases more than k_1 (forward) and $K = \frac{k_1}{k_{-1}}$

(f) (6 points) On the axes below, <u>draw</u> a single reaction coordinate diagram, that includes both a catalyzed (**dashed line**) and a noncatalyzed (**solid line**) reaction curve, indicating the effect of adding a catalyst to the reaction. <u>Briefly explain</u> what a catalyst does.

reaction coordinate \rightarrow

2. ENZYME KINETICS (7 points total)

The enzyme penicillinase degrades the antibiotic penicillin, leading to bacterial resistance. The Michaelis-Menten constants for this enzyme and substrate are $K_m = 5 \times 10^{-5} \text{ mol/L}$ and $k_2 = 2 \times 10^3 \text{ s}^{-1}$.

(a) (4 points) <u>Calculate</u> the maximum rate of this reaction if the total enzyme concentration is 7×10^{-5} M.

 $V_{max} = 1 \times 10^{-1} M/s$

(b) (3 points) <u>Find</u> the substrate concentration for which the rate will be half of that calculated in part (a). No need to show work.

5 x 10⁻⁵ M

3. REACTION MECHANISMS (8 points total)

For the reaction $2 \text{ NO} + \text{O}_2 \rightarrow 2 \text{ NO}_2$, write the rate law for the formation of NO₂ using the following mechanistic proposal and the steady state approximation. Be sure to eliminate intermediates from the rate expression. **Do not** make any assumptions about fast or slow steps (i.e. do not simplify your expression by assuming anything about the relative magnitude of k₋₁ and k₂). Show all work for full credit.

Step 1

$$NO + NO \rightleftharpoons N_2O_2$$

$$k_{-1}$$

$$k_2$$

$$N_2O_2 + O_2 \rightarrow 2 NO_2$$

 \mathbf{k}_1

Step 2

 $rate = \frac{2k_1k_2[NO]^2[O_2]}{k_{-1} + k_2[O_2]}$

4. TRANSITION METALS (16 points total)

 Ni^{2+} in a coordination complex is paramagnetic. (a) <u>Draw</u> the crystal field splitting diagrams <u>showing</u> relative splitting energies for an octahedral crystal field and a tetrahedral crystal field, <u>labeling</u> the diagrams with the (b) names of the d-orbitals, and (c) and symbols for octahedral and tetrahedral field splitting energy. (e) <u>Fill</u> both diagrams with the proper number of electrons and <u>state</u> below each diagram whether the geometry is consistent with a paramagnetic species.

Both are paramagnetic

5. OXIDATION-REDUCTION (8 points total)

When a ruthenium chloride solution was electrolyzed for 32 minutes with a 60-mA current, 40. mg of ruthenium was deposited. <u>Calculate</u> the oxidation number of Ru in the ruthenium chloride solution.

3 or +3 or Ru³⁺

6. REDOX AND THERMODYNAMICS (12 points total)

Given that the standard reduction potentials for vitamin B₁₂ and the protein flavodoxin are

Vitamin B₁₂ E° = - 0.526 V Flavodoxin E° = - 0.230 V

(a) (8 points) Calculate ΔG° in kJ for the one-electron reduction of vitamin B₁₂ by flavodoxin.

 $\Delta G = 28.6 \text{ kJ or kJ/mol}_{OR} 28.5 \text{ kJ or kJ/mol}$

(b) (4 points) <u>State</u> whether vitamin B_{12} or flavodoxin is the better reducing agent. <u>Explain your</u> answer.

Vitamin B₁₂ ΔG is positive for the reduction of B₁₂ by flavodoxin (non-spontaneous) which means B₁₂ is the better reducing agent

OR

Vitamin B_{12} has a more negative potential, so it likes to be oxidized, thus it's a better reducing agent.

7. ACID-BASE EQUILIBRIA (10 points total)

Ketoacidosis is a serious medical condition caused by a build-up of ketone bodies. A 0.50 M solution of one of those ketone bodies, acetoacetic acid, is found to have a pH of 1.95. Determine the K_a of acetoacetic acid. Show all work.

 $K_a = 2.6 \times 10^{-4}$

8. ACID-BASE TITRATION CURVES (5 points total)

On the axes below, <u>draw</u> a titration curve for a weak acid/strong base titration. (a) <u>Mark</u> the equivalence point, (b) <u>mark</u> the half-equivalence point, (c) <u>mark</u> the buffering region with a double headed arrow, and (d) <u>indicate</u> whether the pH at the equivalence point should be < 7, 7, or > 7.

9. BUFFERS (10 points total)

Your UROP supervisor wants you to make a buffer solution with an equal number of moles of acetic acid (CH₃COOH) and acetate (CH₃COO⁻). <u>Calculate</u> to **one significant figure** the minimum number of **moles** of each that you must use to prevent a change in the pH of more than 0.20 pH units after the addition of 1.0 mL of 5.00 M HCl (aq) to 100.0 mL of the buffer solution, generating 101.0 mL of solution. The K_a of acetic acid is 1.8 x 10⁻⁵.

0.02 mol of each

10. THERMODYNAMICS (12 points total)

Without doing any calculations, predict the answers to the following questions for this reaction: $Cl_2(g) \rightarrow 2 Cl(g)$

(a) (4 points) <u>Predict</u> if ΔH° for this reaction is endothermic, exothermic, or zero. <u>Explain your answer</u>.

Endothermic heat taken in to break bonds OR Cl₂ is most stable elemental state

(b) (4 points) <u>Predict</u> if ΔS° is positive, negative, or zero. <u>Explain your answer</u>.

Positive $1 \mod \rightarrow 2 \mod \text{of gas}$

(c) (4 points) <u>Predict</u> whether this reaction is spontaneous at all temperatures. <u>Explain your answer</u>.

No, it is not. Only at T where $T\Delta S > \Delta H$ or at high temperatures only $\Delta G = \Delta H - T\Delta S$

11. MOLECULAR ORBITAL THEORY (26 points total)

(a) (4 points) (i) <u>Briefly compare</u> in words or pictures the probability density (ψ^2) between two nuclei for a σ orbital with that of a σ^* orbital. (ii) <u>Explain</u> how this difference in probability density relates to the relative energies of electrons in these two types of molecular orbitals.

- (i) Ψ^2 is high between nuclei in σ orbital (constructive interference). Destructive interference creates a nodal plane between nuclei for σ^* (no Ψ^2 density)
- (ii) σ is lower in E than σ^* because electrons in σ have high probability of being right between the nuclei where they are strongly bound. In σ^* , no probability of being in this sweet (tightly bound) spot.

(b) (10 points) (i) <u>Draw</u> the MO diagram for the valence electrons of N_2 . <u>Label</u> the (ii) atomic and (iii) molecular orbitals, including the x, y, and z designations where appropriate. (iii) <u>Fill</u> both the atomic and molecular orbitals with the proper number of electrons. (iv) <u>Draw</u> and <u>label</u> the Energy axis. Use the full space available to spread out your energy levels.

(c) (3 points) <u>Write</u> the valence electron configuration for N₂ from the MO diagram above. $(\sigma_{2s})^2 (\sigma_{2s}^*)^2 (\pi_{2px})^2 (\pi_{2py})^2 (\sigma_{2pz})^2$

- (d) (3 points) <u>Calculate</u> the bond order for N_2 based on the MO diagram above. 3
- (e) (6 points) (i) <u>Arrange</u> the following from lowest to highest ionization energy: N, N₂, N₂⁻

Lowest IE	N_2	Ν	N_2	Highest IE
Extra e ⁻ wou	uld go in	2p is highest energy	Highest is σ	and that
π^* , which is	higher	which is lower than	is the lowes	t E of
E, so lowest	IE	π^* but higher than σ	group, so hi	ghest IE

(ii) Explain your order:

Orbitals with highest E have lowest IE

OR

 $N_2^{\ -}$ then N then N_2 is order of orbital energy from highest to lowest

12. LEWIS STRUCTURES, VSEPR, and HYDRIBIZATION (25 points total)

(a) For SF₄ (11 points)

(i) (4 points) <u>Draw</u> the most stable Lewis structure for SF_4 including lone pairs. <u>Indicate</u> any non-zero formal charge(s) and <u>draw</u> any resonance structures if appropriate.

(iv) (2 points) Circle the expected F-S-F angle or angles

<90°; 90°; >90; <109.5°; 109.5°; >109.5°; **<120°**; 120°; >120°

(b) For NH₃ (14 points)

(i) (4 points) <u>Draw</u> the most stable Lewis structure for NH₃ including lone pairs. <u>Indicate</u> any non-zero formal charge(s) and <u>draw</u> any resonance structures if appropriate.

(ii) (2 points) The geometry of the molecule is ______ trigonal pyramidal _____ (example: linear)

(iii) (2 points) Circle the expected H-N-H angle or angles:

<90°; 90°; >90; <109.5°; >109.5°; <120°; 120°; >120°

(iv) (6 points) <u>Write</u> the symmetry of an N-H bond (example σ), give the hybrid or atomic orbital (with their principle quantum numbers) that overlap to form each bond. Where appropriate, include the x,y,z designations.

σ (N2sp³, H1s)

13. ORBITALS AND PERIODIC TRENDS (12 points total)

<u>Circle</u> the correct italicized answer and <u>briefly explain your choice</u>.

(a) A 1s orbital of a multi-electron atom is *lower higher* in energy than the 1s orbital of hydrogen. **Explanation:**

High Z, electrons more tightly bound in multi-electron atom

(c) Low electronegativity is associated with low electron affinity and *high low* ionization energy. **Explanation:**

Low electronegative elements want to donate e⁻, so they have low electron affinity +they have low IE. Easier to donate e⁻ with low IE

OR If it doesn't want an e⁻ (low electronegativity), then it's more likely to lose one

14. PHOTOELECTRIC EFFECT (12 points total)

Explain the following observations.

(a) (4 points) Classical physics predicted that the number of electrons ejected from a metal surface would be unaffected by increasing the intensity of the light. However, experiment showed that an increased number of electrons were ejected as the intensity of light was increased. <u>Explain this experimental observation</u>.

Intensity is photons per second, more intensity, more electrons

(b) (4 points) Classical physics predicted that the kinetic energy of electrons ejected from a metal surface would increase as the intensity of light increased. However, experiment showed that the kinetic energy of the electrons did not change as the intensity of light was increased. (i) <u>Identify</u> a property of light that was found by experiment to affect the kinetic energy of the ejected electrons and (ii) <u>briefly</u> explain why this property has such an effect.

v or λ or **E** of electron. Intensity is number of photons per second. Only increasing the energy per photon affects the KE of the ejected electron.

(c) (4 points) Explain what threshold frequency is and why the value is dependent on the metal in question.

Threshold v is the minimum frequency of light needed for ejection of an electron.

It depends on the metal because different metals bind the electrons with different tightness.

OR

Metals have different work function values.

15. PHOTON EMISSION (8 points total)

A new prototype UV light source emits photons at a wavelength of 388.65 nm.

(a) (4 points) <u>Calculate</u> the energy per photon in **Joules** to **four significant figures**.

 $E = 5.111 \times 10^{-19} J$

(b) (4 points) <u>Calculate</u> the total energy (in kJ to three significant figures) associated with the emission of 0.0166 moles of photons at this wavelength.

5.11 *kJ*

15 of 16

$$\begin{split} c &= 2.9979 \ge 10^8 \text{ m/s} \\ h &= 6.6261 \ge 10^{-34} \text{ J s} \\ N_A &= 6.02214 \ge 10^{-31} \text{ mol}^{-1} \\ 1 &= 1.66054 \ge 10^{-27} \text{ kg} \\ m_e &= 9.10939 \ge 10^{-31} \text{ kg} \\ R &= 8.314 \text{ J/(K mol)} R &= 0.08206 \text{ L} \text{ atm } \text{K}^{-1} \text{ mol}^{-1} \\ R_H &= 2.17987 \ge 10^{-18} \text{ J} \\ e &= 1.60218 \ge 10^{-19} \text{ C} \qquad 1 \text{ eV} = 1.60218 \ge 10^{-19} \text{ J} \\ \epsilon_0 &= 8.8542 \ge 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{m}^{-1} \\ \text{K}_w &= 1.00 \ge 10^{-14} &\& 14.00 = \text{ pH} + \text{ pOH at } 25.0^{\circ}\text{C} \\ \Im \text{ (Faraday's constant)} &= 96,485 \text{ C} \text{ mol}^{-1} \\ \hline \hline \text{Electromagnetic Spectrum:} \\ \hline \text{Violet} \sim 400\text{ -}430 \text{ nm} \\ \text{Blue} \sim 431\text{ -}490 \text{ nm} \\ \text{Green} \sim 491\text{ -}560 \text{ nm} \\ \text{Yellow} \sim 561\text{ -}580 \text{ nm} \\ \text{Orange} \sim 581\text{ -}620 \text{ nm} \\ \text{Red} \sim 621\text{ -}700 \text{ nm} \\ \text{Complementary Colors: red/green,} \\ \text{blue/orange, yellow/violet} \\ \Gamma < \text{Br} < \text{CI} \quad (\text{weak field ligands}) \\ < F' < \text{OH} < \text{H}_2\text{O} (\text{intermediate}) \\ < \text{NH}_3 < \text{CO} < \text{CN} \quad (\text{strong field ligands}) \\ \text{I} \ \text{C} \cdot \text{V} = 1 \text{ J} \qquad 1 \text{ J} = 1 \text{ kgm}^2 \text{s}^{-2} \\ 1A = 1\text{ C/s} \qquad 1W = 1 \text{ J/s} \\ \text{ln} = 2.3025851 \text{ log} \\ 1 \text{ Bq} = 1 \text{ nuclei/sec} \\ x = [\text{-b} \pm (\text{b}^2\text{ -}4ac)^{1/2}]/2a \quad ax^2 + \text{ bx} + \text{c} = 0 \\ \text{K.E.} = V_2 \text{ mv}^2 \text{ p} = \text{mv} \quad \lambda = \frac{\text{h}}{\text{p}} \\ \text{E} = \text{hv} = \text{hc}/\lambda \quad \text{c} = v\lambda \\ \text{E}_n = -\frac{Z^2 \text{R}_{\text{H}}}{n^2} \qquad \text{E}_{n1} = -\frac{Z_{\text{eff}}^2 \text{R}_{\text{H}}}{n^2} \\ \text{for } n_f < n_i \text{ for } n_f > n_i \text{ } \\ v = \frac{Z^2 \text{R}_{\text{H}}}{h} \left(\frac{1}{n_f^2} - \frac{1}{n_i^2}\right) \quad v = \frac{Z^2 \text{R}_{\text{H}}}{h} \left(\frac{1}{n_i^2} - \frac{1}{n_f^2}\right) \end{aligned}$$

 $U(r) = (z_1 z_2 e^2)/(4\pi \epsilon_0 r)$ Electronegativity = (IE + EA)/2 $\Delta H_r^{\circ} = \Sigma \Delta H_B$ (reactants) - $\Sigma \Delta H_B$ (products) $\Delta H_r^{\circ} = \Sigma \Delta H_f^{\circ}$ (products) - $\Sigma \Delta H_f^{\circ}$ (reactants) $\Delta S_r^{\circ} = \Sigma S^{\circ}$ (products) - ΣS° (reactants) $\Delta G_r^{\circ} = \Sigma \Delta G_f^{\circ}$ (products) - ΣG_f° (reactants) $\Delta G = \Delta H - T\Delta S$ $\Delta G = \Delta G^{\circ} + RT \ln Q$ $\Delta G^{\circ} = -RT \ln K$ $\Delta G = RT \ln Q/K$ $\ln (K_2/K_1) = - (\Delta H^{\circ}/R)(1/T_2 - 1/T_1)$ PV = nRT $s = k_H P$ $pH \approx pK_a - \log ([HA]/[A^-])$ $pH=-log [H_3O^+]$ $pOH=-log [OH^-]$ $K_w = K_a K_b$ pK = -log KO = It $\Delta G^{\circ}_{cell} = -(n)(\Im) \Delta E^{\circ}_{cell}$ $\Delta E^{\circ}(\text{cell}) = E^{\circ}(\text{cathode}) - E^{\circ}(\text{anode})$ $\Delta E^{\circ} = E^{\circ}(\text{reduction}) - E^{\circ}(\text{oxidation})$ $\Delta E_{\text{cell}} = E^{\circ}_{\text{cell}} - (\text{RT/n}\Im)\ln Q$ $\Delta E_{cell} = E_{cell}^{\circ} - [(0.025693 \text{ V})(\ln \text{Q})/\text{n}] \text{ at } 25.0^{\circ}\text{C}$ $\ln K = (n\Im/RT) \Delta E^{\circ}$ $A = A_0 e^{-kt}$ $N = N_0 e^{-kt}$ A = kN $[A] = [A]_o e^{-kt}$ $t_{\frac{1}{2}} = \ln 2 / k$ $1/[A] = 1/[A]_o + kt$ $t_{\frac{1}{2}} = 1 / k[A]_o$ $\ln(k) = \ln(A) - E_a/RT$ $k = Ae^{-(E_a/RT)}$ $\ln(k_2/k_1) = -(E_a/R)(1/T_2 - 1/T_1)$ $d[P]/dt = (k_2[E]_o[S])/([S] + K_m)$ $V_{max} = k_2 [E]_o$

1 IA	2 IIA	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	~	9 VIIIB	10	B =	11 IIB	13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	18 ^a VIIIA b
The A Me	Active tals																Noble Gases
=																	2
п 1.008												I	The	Nonme	tals	I	не 4.003
ς, <u>π</u>	4 Re											ς α	و ر	r 7	∞⊂	6 н	10 Ne
6.941	9.012											10.81	12.011	14.007	15.999	18.998	20.179
11	12											13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
22.990	24.305				Tr	ansition	Elemen	ts				26.982	28.086	30.974	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ξ	>	Cr	Mn	Fe	Co	ïZ	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.08	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.38	69.72	72.59	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	qN	Mo	Ic	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.906	91.224	92.906	95.94	(86)	101.07	102.906	106.42	107.868	112.41	114.82	118.69	121.75	127.60	126.904	131.29
55	56	57	* 72	73	74	75	76	<i>LL</i>	78	62	80	81	82	83	84	85	86
Cs	Ba	La	Ηf	Та	M	Re	Os	lr	Pt	Au	Hg	IT	Рb	Bi	Po	At	Rn
132.905	137.33	138.905	178.49	180.948	183.85	186.21	190.2	192.22	195.08	196.966	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87 Fr	88 Ra	89 Ac	† 104 Unq	105 Unp	106 Unh												
(223)	c70.022	870.177	(201)	(262)	(263)												
								Inne	er Transi	ition Me	tals						_
			58	50	60	19	69	63	64	65	99	67	89	69	70	12	
*	anthani	des	Ce Ce	Pr	PN	Pm	Sm	Eu	Gd	20 PP	Dy	Ho	Er	Tm	γp	Lu	
			140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967	
+			6 F	91	92	93	94	95	96	97	98 30	66	100	101	102	103	_
7	Actinide	s	1n 232.038	ra 231.036	U 238.029	237.048	Pu (244)	Am (243)	Cm (247)	BK (247)	U (251)	ES (252)	Fm (257)	Md (258)	N0 (259)	Lr (260)	
		-					Ì										-

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.