LECTURE 30

1. Trichloromethane and chlorine gas react according to the following equation:

$$CHCl_3(g) + Cl_2(g) \rightarrow CCl_4(g) + HCl(g)$$

Tripling the concentration of Cl_2 increases the rate by a factor of 1.7 (the square root of 3) and tripling the concentration of $CHCl_3$ increases the rate by a factor of 3.

- (a) Determine the rate law for the reaction.
- (b) If [CHCl₃] is increased by a factor of 5 and [Cl₂] is increased by a factor of 4, estimate the change of rate observed.
- **2.** For the reaction $A + B + C \rightarrow$ products, the following data were collected:

Initial concentration (mmol·L⁻¹)

Experiment	$[\mathbf{A}]_0$	$[\mathbf{B}]_0$	$[C]_0$	Initial rate (mmol·L ⁻¹ ·s ⁻¹)
1	2.06	3.05	4.00	3.7
2	0.87	3.05	4.00	0.66
3	0.50	0.50	0.50	0.013
4	1.00	0.50	1.00	0.072

The initial rate given in the table above is for the rate of loss of A.

- (a) Write the rate law for the reaction.
- **(b)** Determine the overall order of the reaction.
- (c) Determine the value of the rate constant. Hint: convert mmol to mol first.

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.