

For: $NH_3(aq) + H_2O(l)$ $\Rightarrow NH_4^+(aq) + OH^-(aq)$ Fill in the chart below: NH_4^+ (aq) $NH_3(aq)$ + $OH^{-}(aq)$ 1. initial molarity 0.15 0 0 change in molarity $+\mathbf{x}$ $+\mathbf{x}$ $+\mathbf{x}$ equilibrium molarity 0.15 + x**+x** $+\mathbf{x}$ 2. initial molarity 0.15 0 0 change in molarity 0 $+\mathbf{x}$ $+\mathbf{x}$ equilibrium molarity 0.15 $+\mathbf{x}$ $+\mathbf{x}$ 3. initial molarity 0.15 0 0 change in molarity $+\mathbf{x}$ $+\mathbf{x}$ -X equilibrium molarity **0.15-x** $+\mathbf{x}$ $+\mathbf{x}$

3

For: $NH_3(aq) + H_2O(l) \implies NH_4^+(aq) + OH^-(aq)$ Fill in the chart below:				
1 111		$NH_3(aq)$	$\mathrm{NH}_{4}^{+}(\mathrm{aq})$	+ $OH^{-}(aq)$
3%	1. initial molarity change in molarity equilibrium molarity	0.15 +x 0.15+x	0 +x +x	0 +x +x
3%	2. initial molarity change in molarity equilibrium molarity	0.15 0 0.15	0 +x +x	0 +x +x
95%	3. initial molarity change in molarity equilibrium molarity	0.15 -x 0.15-x	0 +x +x	0 +x +x

When asked to "check assumption," what do you do?

- 0.00164/0.15 x 100 % = 1.1 % (1.1% is less then 5%, assumption is okay)
- 0.15 0.00164 = 0.14836 (within sig figs, 0.00164 is small compared to 0.15)
- 3. 0.00164 x 0.15 x 100 % = 0.0246 % (0.0246 % is less then 5%, assumption is okay)
- 4. (0.15 0.00164) x 100 % = 14.8 % (14.8 is greater than 5%, assumption is not okay)

When asked to "check assumption," what do you do?

- 1. $0.00164/0.15 \ge 100 \% = 1.1 \% (1.1\%)$ is less then 5%, assumption is okay)
- 3%

7%

9%

- 2. 0.15 0.00164 = 0.14836 (within sig figs, 0.00164 is small compared to 0.15)
- 3. 0.00164 x 0.15 x 100 % = 0.0246 % (0.0246
 % is less then 5%, assumption is okay)
- 4. (0.15 0.00164) x 100 % = 14.8 % (14.8 is greater than 5%, assumption is not okay)

Predict whether the pH is acidic, neutral, or basic for a solution of NaCH₃COO(aq).

- K_a of CH_3COOH is 1.76 x 10⁻⁵.
- 1. acidic
- 2. neutral
- 3. Basic
- 4. Not enough information

A strong acid and the salt of its conjugate base don't make a good buffer. Why?

- 1. The conjugate base of a strong acid is a **weak** base, and a weak base can't neutralize added acid so pH is not maintained.
- 2. The conjugate base of a strong acid is **ineffective** as a base, and an ineffective base can't neutralize added acid so pH is not maintained.
- 3. The conjugate base of a strong acid is a **strong** base, and a strong base changes the pH.

A strong acid and the salt of its conjugate base don't make a good buffer. Why?

- The conjugate base of a strong acid is a weak base,
 and a weak base can't neutralize added acid so pH is not maintained.
- 2. The conjugate base of a strong acid is ineffective
 67%

 as a base, and an ineffective base can't neutralize
 added acid so pH is not maintained.
- 3. The conjugate base of a strong acid is a strong
 13% base, and a strong base changes the pH.

Which is the correct simplified expression for K_a following application of the assumption that x is small compared to 1.00 and 0.500?

- 1. $K_a = 0.500/1.00$
- 2. $K_a = (x)(0.500+x)/1.00$
- 3. $K_a = x^2/1.00$
- 4. $K_a = (x)(0.500)/1.00$
- 5. $K_a = (x)(0.500)/1.00-x$
- 6. $K_a = x / 1.00$

Which is the correct simplified expression for K_a following application of the assumption that x is small compared to 1.00 and 0.500?

Which of the following K_a expressions is correct following the addition of 0.100 mol of HCl?

0%

0%

0%

0%

- 1. $K_a = [H_3O^+][HCOO^-]/[HCOOH]$ $K_a = (0.400 + x)(x) / (1.10 - x)$
- 2. $K_a = [H_3O^+][HCOO^-]/[HCOOH][H_2O]$ $K_a = (0.400 + x)(x) / (1.10 - x)$
- 3. $K_a = [H_3O^+][HCOO^-]/[HCOOH]]$ $K_a = x^2 / (1.10 - x)$
- 4. $K_a = [H_3O^+][HCOO^-]/[HCOOH]]$ $K_a = (0.500 + x)(x) / (1.00 - x)$

Which of the following K_a expressions is correct following the addition of 0.100 mol of HCl?

MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.