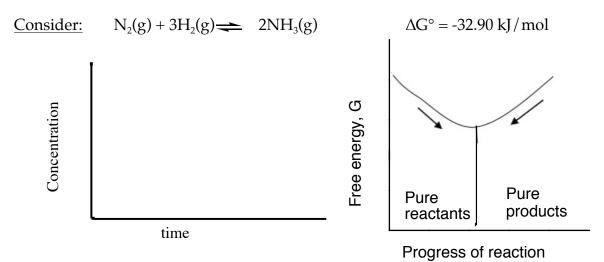
Reading for Today: Sections 10.1-10.5, 10.9 (Sections 9.1-9.4 in 4th ed.) **Reading for Lecture #19**: Sections 10.9-10.13 (Section 9.4-9.5 in 4th ed.)


Topics: Chemical Equilibrium

I. Nature of Chemical Equilibrium

II. Meaning of K

III. External Effects on K

Chemical reactions reach a state of dynamic *equilibrium* in which the rates of forward and reverse reactions are equal and there is no net change in composition.

When the reaction mixture has not produced enough products to have reached equilibrium, the spontaneous direction of change is toward more products ($\Delta G_{\text{forward reaction}}$ ____0).

When excess products are present (ex. pure ammonia), the reverse reaction is spontaneous ($\Delta G_{\text{forward reaction}} = 0$).

The reaction free energy (ΔG) changes as the proportion of reactants and products

$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
 Where

 ΔG = reaction free energy at any <u>definite</u>, <u>fixed</u> composition of the reaction mixture.

 ΔG° = is the difference in free energy of the products and reactants <u>in their standard states</u>.

R = universal gas constant, T = Temperature, and Q = reaction quotient

For $aA + bB \rightleftharpoons cC + dD$

$$\Delta G = \Delta G^{\circ} + RT \ln \underbrace{ \begin{bmatrix} (P_{C}/P_{ref})^{c} \ (P_{D}/P_{ref})^{d} \\ (P_{A}/P_{ref})^{a} \ (P_{B}/P_{ref})^{b} \end{bmatrix} }_{Q} \Delta G = \Delta G^{\circ} + RT \ln \underbrace{ \begin{bmatrix} ([C]/C_{ref})^{c} \ ([D]/C_{ref})^{d} \\ ([A]/C_{ref})^{a} \ ([B]/C_{ref})^{d} \end{bmatrix} }_{Q}$$

$$Q = \underbrace{P_{C}^{c} P_{D}^{d}}_{P_{\Delta}^{a} P_{B}^{b}}$$

$$Q = \underbrace{[C]^{c} [D]^{d}}_{[A]^{a} [B]^{b}}$$

At equilibrium $\Delta G = 0$ and Q = K (the equilibrium constant),

$$0 = \Delta G^{\circ} + RT \ln K$$

$$\Delta G^{\circ} = -RT \ln K$$

K = is the equilibrium constant. It has the same form as ______, but only uses the amounts of products and reactants at equilibrium.

$$K_{p} = \left\{ \frac{P_{C}^{c} P_{D}^{d}}{P_{A}^{a} P_{B}^{b}} \right\}_{eq.} \qquad K_{c} = \left\{ \frac{[C]^{c} [D]^{d}}{[A]^{a} [B]^{b}} \right\}_{eq.}$$

We can rewrite $\Delta G = \Delta G^{\circ} + RT \ln Q$ as

$$\Delta G = -RT \ln K + RT \ln Q$$
 or $\Delta G = RT \ln (Q/K)$

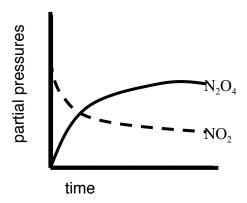
Relationship between K and Q:

If Q < K, ΔG is _____ and the forward reaction will occur If Q > K, ΔG is ____ and the reverse reaction will occur

Example: $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$

If K=1.9 x 10^{-4} at 400° C, and P_{N2} = 5.5 bar P_{H2} =2.2 bar P_{NH3} = 1.1 bar at 400° C, which direction will the reaction go?

Q =


WHAT DOES K TELL US?

K tells us about the mixture of products and reactants at **equilibrium**, whether we can expect **high** or **low** concentration of products at equilibrium.

when K > 1, _____ products when K < 1, ____ products

For K >1
2NO₂(g)
$$\implies$$
 N₂O₄(g) \triangle G° = -4.76 kJ/mol and K = 6.84 at 298 K

Start with 1.000 bar of NO_2 (reactant) and no N_2O_4 (product) so Q < K and $\Delta G < 0$, and the reaction goes forward

Calculate the partial pressures of NO_2 and N_2O_4 at equilibrium using the given value of K and the given starting concentration of reactant.

$$K = 6.84 =$$

$$x =$$
____bar (____)
 $1.000 - 2x = 1.000 - 2(____) = ___bar (____)$

For K > 1, more products at equilibrium.

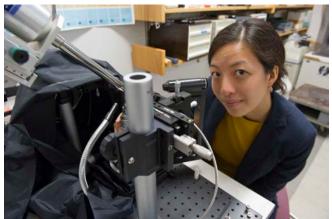
Relationship between ΔG° and the magnitude of K:

rewrite $\Delta G^{\circ} = -RT \ln K$ as

$$K = \exp \left[-\Delta G^{\circ} / RT\right]$$

K is large if ΔG° is ???

Consider the decomposition of baking soda at two different temperatures. $2NaHCO_3(s) \Rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$


$$\Delta G^{\circ} = +36 \text{ kJ/mol at room temperature}$$
 K = _____

$$\Delta G^{\circ} = -15 \text{ kJ/mol at } 350^{\circ}\text{F}$$

At room temperature, very very little CO₂ is produced so bread will not rise.

Chemical equilibrium applies to large molecules (like proteins) too.

Chemical Equilibrium: In Her Own Words

Nozomi Ando discusses how chemical equilibrium relates to her research on understanding proteins that are successful chemotherapeutic targets.

Image from "Behind the Scenes at MIT". The Drennan Education Laboratory. Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License.

Nozomi's video can be found at http://chemvideos.mit.edu/all-videos/

EXTERNAL EFFECTS ON K

Principle of Le Châtelier: A system in equilibrium that is subjected to stress will react in a way that tends to ______ the effect of the stress.

Le Châtelier's principle provides a way to predict qualitatively the direction of change of a system under an external perturbation.

ADDING AND REMOVING REAGENTS

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$$

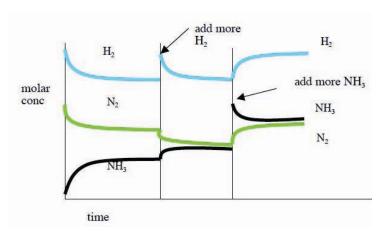


Figure by MIT OpenCourseWare.

1) ADDING MORE REACTANT

If you are at equilibrium and then add more hydrogen, according to Le Châtelier's principle, the system will tend to minimize the increase in the number of hydrogen molecules. Reaction shifts to the right toward ______.

This can be explained in terms of Q and K. When reactants are added, Q falls below K momentarily, because the reactant concentration term appears in the denominator.

$$Q = [products]/[reactants] K= {[products]/[reactant]}_{equilibrium}$$

With Q<K, ΔG is negative, and the system responds by making more products (reaction proceeds in the forward direction).

2) ADDING MORE PRODUCT

Q rises above K. Q is larger because product term is in numerator (K is unchanged). With Q>K, Δ G is positive, and the reaction goes toward reactants (reaction proceeds in the reverse direction).

3) REMOVING PRODUCT

Q____K and ΔG is _____, so the reaction shifts to _____

MIT OpenCourseWare https://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.