Write your name and your TA's name below. **Do not open the exam until the start of the exam is announced.** The exam is closed notes and closed book.

1. Read each part of each problem carefully and thoroughly.

2. Show your work. Indicate units. Use correct significant figures.

3. Make your dots on Lewis structures clearly visible.

4. If you don't understand what the problem is requesting, raise your hand and a proctor will come to your desk.

5. Physical constants, formulas and a periodic table are given on the last page. You may detach this page **once the exam has started**.

TRANSITION METALS	1. (32 points)
	2. (10 points)
CHEMICAL KINETICS	3. (16 points)
NUCLEAR KINETICS	4. (10 points)
OXIDATION REDUCTION	5. (10 points)
	6. (10 points)
	7. (12 points)

Total (100 points)

Name Answer Key

ТА _____

1. TRANSITION METALS (32 points total)

(a) (3 points) Calculate the d-count for Fe^{3+}

5

(b) (11 points) For Fe³⁺, (i) in the appropriate places below, draw crystal field splitting diagrams with electrons to show orbital occupancies in both weak and strong **octahedral fields**. Label the diagrams (ii) with the names of the d-orbitals, and (iii) with the appropriate orbital sets e_g and t_{2g} designators.

Weak Field Octahedral Diagram

c) (6 points) <u>Fill in the blanks</u> below based on your diagrams in part (b).

Answer for Weak Field Diagram

- (i) system is high spin
- (ii) # unpaired electrons is 5
- (iii) d^n electron configuration $t_{2g}^3 e_g^2$

Answer for Strong Field Diagram

system is low spin # of unpaired electrons is 1 d^n electron configuration t_{2g}^{5}

(d) (3 points) <u>Calculate</u> the crystal field stabilization energy (CFSE) for high spin Fe^{3+} . Do not include pairing energy.

0

(e) (3 points) Calculate the crystal field stabilization energy (CFSE) for low spin Fe^{3+} . Do not include pairing energy.

-2Δ₀

(f) (6 points) <u>Calculate</u> the octahedral crystal field splitting energy in kJ/mol for an Fe³⁺ complex that absorbs light most intensely at 700. nm. Show your work.

 $\Delta_0 = 171 \text{ kJ/mol}$

2. TRANSITION METALS (10 points total)

(a) (6 points) Draw d-orbitals, d_z^2 and d_{yz} on top of the diagrams below.

(**b**) (4 points) Predict the relative energies of just these two d-orbitals for the linear molecule drawn along the Z-axis. Explain your reasoning.

 d_z^2 is much more destabilized than d_{yz} . Ligands right along z will repel d_z^2 orbitals since these orbitals are on axis. d_{yz} is 45° off axis, so repulsion is less.

3. CHEMICAL KINETICS (16 points total)

The following data were obtained for the reaction O₂ (g) + 2NO (g) \rightarrow 2NO₂ (g). Initial concentrations, mol•L⁻¹

Experiment	[O ₂] ₀	[NO] ₀	Initial rates, mol•L ⁻¹ •s ⁻¹
1	1.10 x 10 ⁻²	1.30 x 10 ⁻²	3.21 x 10 ⁻³
2	2.20 x 10 ⁻²	1.30 x 10 ⁻²	6.40 x 10 ⁻³
3	1.10 x 10 ⁻²	2.60 x 10 ⁻²	12.8 x 10 ⁻³

(a) (3 points) Determine the order of the reaction with respect to [O2]. No need to show work.

First order

(b) (3 points) Determine the order of the reaction with respect to [NO]. No need to show work. **Second order**

(c) (3 points) Write the rate law for the overall reaction. No need to show work. Rate = $k[O_2][NO]^2$

(d) (3 points) Determine the order of the overall reaction. No need to show work. 3

(e) (4 points) Calculate the rate constant k (the value and the units). Show your work.

 $k = 1730 M^{-2} s^{-1}$

4. NUCLEAR CHEMISTRY (10 points)

The activity of a strontium-90 source is 3.0×10^{14} Bq and its half-life is 28.1 years. Calculate the activity in **Bq** after 75.0 years have passed. Show your work.

 $A=4.7 \times 10^{13} Bq$

5. OXIDATION REDUCTION (10 points)

(a) (6 points) Balance in **BASIC** solution the following skeletal equation by using oxidation and reduction half-reactions: $Pb(OH)4^{2-}(aq) + ClO^{-}(aq) \rightarrow PbO_2(s) + Cl^{-}(aq)$

 $Pb(OH)4^{2-} + ClO^{-}PbO2 + H2O + Cl^{-} + 2OH^{-}$

(b) (4 points) The oxidizing agent is $\underline{Cl^+ \text{ or } ClO^-}$ and the reducing agent is $\underline{Pb^{2+} \text{ or } Pb(OH)}4^{2-}$

6. OXIDATION-REDUCTION (10 points)

For the following reagents under standard conditions: Au (s), Cl₂ (g), Pb (s), Sn (s), Ni (s), Cd (s), Zn (s), Au⁺ (aq), Cl⁻ (aq), Pb²⁺ (aq), Sn²⁺ (aq), Ni²⁺ (aq), Zn²⁺ (aq)

Half-Reactions	$E^{\circ}(\text{volts})$
$\operatorname{Au}^+(aq) + e^- \Rightarrow \operatorname{Au}(s)$	1.69
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	1.36
$2\mathrm{H}^+(aq) + 2\mathrm{e}^- \Rightarrow \mathrm{H}_2(g)$	0
$Pb^{2+}(aq) + 2 e^{-} \Rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(aq) + 2 e^{-} \Rightarrow \operatorname{Sn}(s)$	-0.15
$Ni^{2+}(aq) + 2 e^{-} \Rightarrow Ni(s)$	0.26
$\operatorname{Cd}^{2+}(aq) + 2 e^{-} \Rightarrow \operatorname{Cd}(s)$	-0.40
$\operatorname{Zn}^{2+}(aq) + 2e^{-} \Rightarrow \operatorname{Zn}(s)$	0.76

(a) (3 points) State which reagent is the strongest oxidizing agent.

Au⁺

(b) (3 points) State which reagent is the strongest reducing agent.

Zn (s)

(c) (4 points) State which reagent(s) will reduce $Pb^{2+}(aq)$ while leaving $Cd^{2+}(aq)$ unreacted.

Sn(s) Ni (s)

7. OXIDATION-REDUCTION (12 points)

A galvanic cell is constructed using the following half-reactions

Half-Reactions	<i>E</i> °(volts) at 25°C
$Pb^{2+}(aq) + 2 e^{-} \Rightarrow Pb(s)$	- 0.13
$\operatorname{Cr}^{3+}(\operatorname{aq})+\operatorname{e}^{-} \Rightarrow \operatorname{Cr}^{2+}(\operatorname{aq})$	- 0.42

Calculate the initial voltage generated by the cell at 25 °C if the initial concentration of Pb²⁺ (*aq*) is 0.15 M, $Cr^{2+}(aq)$ is 0.20 M, and $Cr^{3+}(aq)$ is 0.0030 M. Show your work.

E = 0.37 V

5.111 Principles of Chemical Science Fall 2014

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.