5.12 S Review Se	5.12 Spring 2003 Review Session: Exam #2		
 VI. Alkanes A. Molecular Formulas Degrees of Unsaturation Constitutional Isomers B. IUPAC Nomenclature C. Conformational Analysis Ethane Newman Projections Propane Butane VII. Cycloalkanes Ring Size and Strain Cyclopropane Cyclopentane Cyclopentane Cyclopentane Cyclohexane Conformational Analysis Drawing Chairs Ring Flip Mono-Substituted Cyclohexane Cis/Trans Isomerism Preferred Conformers Bicyclic Ring Systems 	 B. Chirality and Stereocenters C. Enantiomers Cahn–Ingold–Prelog Convention (R/S) Optical Activity Description of Samples D. Diastereomers Cis/Trans Isomers (Geometric) Molecules with >1 Stereocenter X Free Radical Reactions Chlorination of Methane Mechanism Review of Thermodynamics Review of Kinetics Reaction–Energy Diagrams Thermodynamic Control Kinetic Control Hammond Postulate Multi-Step Reactions Chlorination of Methane Inequivalent Hydrogens (1°,2°,3°) Relative Reactivity Selectivity Bromination of Propane Selectivity (Hammond Postulate) Radical Stability 		
A. Stereoisomers	H. General Selectivity of Radical Halogenations		

 A. Molecular Form 1. Degrees of Uns 2. Constitutional B. IUPAC Nomence C. Conformational 	ulas saturation Isomers lature	 Draw co Calcula Draw si Draw N 	onstitutional isomers for a given molecular formula. te degrees of unsaturation. tructures corresponding to IUPAC names. Jewman projections.
 Conformational Ethane a) Newman Proje 2. Propane 3. Butane 	ections	• Determ the rotatic • Draw p	ine relative energies of rotational conformers. Know onal energy values on the handout! otential energy diagrams for bond rotations.
Draw all of the cons nd name them using	stitutional isom IUPAC nomen	ers of C ₅ H ₁₂ clature.	3. a) Approximate the barrier to rotation around the C2–C3 bond of 2,2-dimethylbutane. Draw Newman projections to illustrate your answer.
Draw all of the cons ad name them using . For each molecular egrees of unsaturatio onstitutional isomers	stitutional isom IUPAC nomen r formula, calcu on and draw tw s.	ers of C ₅ H ₁₂ clature. late the ro possible	 3. a) Approximate the barrier to rotation around the C2–C3 bond of 2,2-dimethylbutane. Draw Newman projections to illustrate your answer. b) Draw a potential energy diagram for rotation around theC2–C3 bond of 2,2-dimethylbutane.

