5.12

V. Alkanes
G. Cycloalkanes

1. Nomenclature
2. Stereochemistry
3. Ring Size and Strain
H. Cyclohexane
4. The Chair
5. Ring Flip
6. Monosubstituted
7. Disubstituted

I. Polycyclic

Naming Cycloalkanes

1. Find parent (ring or chain, depending on which is larger).
2. Label point of attachment of alkyl, halo, etc. as C1.
3. Continue numbering so that the second substitutent is the lowest possible number.
4. If 2 or more groups could potentially get the same number, use alphabetical order as a tie-breaker.

Ring Inversion (tipping) of Cyclohexane

Courtesy of Jeffrey S. Moore, Department of Chemistry, University of Illinois at Urbana-Champaign. Used with permission. Adapted by Kimberly Berkowski.

Atomic Motions Involved in Ring Inversion

Courtesy of Jeffrey S. Moore, Department of Chemistry, University of Illinois at Urbana-Champaign. Used with permission. Adapted by Kimberly Berkowski.

Disubstituted Gyclohexane

If $\mathbf{2}$ substituents are on cyclohexane the lowest energy conformation:
a) Has both substituents equatorial (if possible)
b) The group with the largest A value equatorial
c) t-Bu is NEVER axial!

Disubstituted Examples

Polycyclic

1. Fused rings

Nomenclature:

a. Prefix = bicyclo or spiro
b. [Number] = number of carbons between bridgeheads, descending order
c. Suffix = total carbons -ane

2. Bridged rings

bicyclo[2.2.1]heptane

3. Spirocyclic rings (rare)

spiro[4.4]nonane

