Using Structure to Predict Acidity/Basicity

Strong acid

relatively unstable acid relatively stable conjugate base,

Weak acid

relatively stable acid relatively unstable conjugate base

Strong base

relatively unstable base relatively stable conjugate acid

Weak base

relatively stable base relatively unstable conjugate acid,

Effect of Structure on pK_a I

1. Charged vs. noncharged species

a charged molecule is more acidic than a neutral molecule

$$NH_4^+ \longrightarrow NH_3^- + H^+$$
 $pK_a = 9.4$
 $NH_3 \longrightarrow NH_2^- + H^+$
 $pK_a = 36$

2. Electronegativity of the atom attached to H

the more EN the attached atom, the more acidic the molecule

$$CH_3OH$$
 vs CH_3NH_2
 $pK_a = 15.5$ $pK_a = 40$

Effect of Structure on pK_a II

3. Size of attached atom

the larger the attached atom, the more acidic (down column)

4. Inductive electron withdrawal

- a. Magnitude of electronegativity (the more EN, the more acidic)
- b. Distance away from (-) charged conjugate base (closer = more acidic)

Example: N vs O vs S

$$H_{3}C - \overset{+}{S} : H_{3}C - \overset{+}{O} : H_{3}C - \overset{+}{N} - H$$
 $pK_{a} = -6.8$
 $pK_{a} = -2.4$
 $pK_{a} = 9.8$
 $H_{3}CH_{2}C - \overset{+}{S} - H$
 $pK_{a} = 10.6$
 $pK_{a} = 15.9$
 $pK_{a} = 35$

Nitrogen is most effective at stabilizing a positive charge and least effective at stabilizing a negative charge

Sulfur is most effective at stabilizing a negative charge and least effective at stabilizing a positive charge

Effect of Structure on pK, III

5. Hybridization (sp, sp², sp³)

Relative Acidity

Conjugate base has negative charge, which is stabilized by orbitals with greater *s* character

Effect of Structure on pK, IV

6. Resonance

resonance stabilizes the negative charge of the conjugate base the more resonance contributors, the more stable the molecule

$$H_3C$$
 OH

$$H_3C$$
 OH

$$H_3C$$
 OH

$$H_3C$$

$$OH$$

$$H_3C$$