## Lecture 12: Reactions of Alkenes

## I. Finish Addition of H-X to an Alkene

- 5. Carbocation Rearrangements
- II. Preparation of:
  - A. Alkyl halides
  - B. Vicinal Dihalides
  - C. Halohydrins
  - D. Alcohols
    - 1. Acid-catalyzed hydration
    - 2. Oxymercuration-Reduction
    - 3. Hydroboration-Oxidation
  - E. Ethers
  - F. Alkanes

- G. Epoxides
  - 1. Acid-catalyzed ring opening
  - 2. Base-catalyzed ring opening
- H. Cycopropane
  - 1. CHCX<sub>3</sub>, strong base
- 2. Simmons-Smith
- I. cis-1,2-Diols
  - 1. OsO<sub>4</sub>
  - 2. Cold, dilute KMnO<sub>4</sub>
- J. Ketones, Aldehyes, Carboxylic Acids
  - Alkene cleavage

     KMnO<sub>4</sub>
     O<sub>3</sub> (oxidative and reducing)
  - 2. Diol cleavage

Suggested Reading: Chapter 7, 9.12-9.14 Suggested Problems: 7.23-7.45, 7.48-7.57

| Carbocation Intermediate Summary                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stability - the more substituents on the carbocation, the more stable the carbocation, and the faster it can form (Hammond Postulate)                                                                    |
| Regiospecificity - a reaction will take the path of the more stable carbocation intermediate                                                                                                             |
| Markovnikov's Rule - when adding an electrophile to an alkene, H forms a sigma bond to the carbon with more H's, and the functional group forms a sigma bond to the carbon with more alkyl substitutents |
| Rearrangements         - if a carbocation can become more stable by rearranging, it will!           - look for possible hydride shifts, methyl shifts, and ring expansions                               |
| Stereochemistry                                                                                                                                                                                          |
| -syn and anti addition observed*                                                                                                                                                                         |
| -during the 1 <sup>st</sup> step of the reaction, the electrophile can add to either face (top or bottom) of the alkene                                                                                  |
| -during the $2^{nd}$ step of the reaction, the nucleophile can add to either the top or bottom lobe of the empty p orbital of the carbocation                                                            |
| *Syn - the two ends of the double bond react from the same side                                                                                                                                          |
| Anti - the two ends of the double bond react from opposite sides                                                                                                                                         |



