Lecture 12: Reactions of Alkenes

I. Finish Addition of $\mathrm{H}-\mathrm{X}$ to an Alkene
5. Carbocation Rearrangements
II. Preparation of:
A. Alkyl halides
B. Vicinal Dihalides
C. Halohydrins
D. Alcohols

1. Acid-catalyzed hydration
2. Oxymercuration-Reduction
3. Hydroboration-Oxidation
E. Ethers
F. Alkanes
G. Epoxides
4. Acid-catalyzed ring opening
5. Base-catalyzed ring opening
H. Cycopropane
6. CHCX_{3}, strong base
7. Simmons-Smith
I. cis-1,2-Diols
8. OsO_{4}
9. Cold, dilute KMnO_{4}
J. Ketones, Aldehyes, Carboxylic Acids
10. Alkene cleavage
a. KMnO_{4}
b. O_{3} (oxidative and reducing)
11. Diol cleavage

Carbocation Intermediate Summary

Stability - the more substituents on the carbocation, the more stable the carbocation, and the faster it can form (Hammond Postulate)

Regiospecificity - a reaction will take the path of the more stable carbocation intermediate

Markovnikov's Rule - when adding an electrophile to an alkene, H forms a sigma bond to the carbon with more H's, and the functional group forms a sigma bond to the carbon with more alkyl substitutents

Rearrangements

- if a carbocation can become more stable by rearranging, it will!
- look for possible hydride shifts, methyl shifts, and ring expansions

Stereochemistry

-syn and anti addition observed*
-during the $1^{\text {st }}$ step of the reaction, the electrophile can add to either face (top or bottom) of the alkene
-during the $2^{\text {nd }}$ step of the reaction, the nucleophile can add to either the top or bottom lobe of the empty p orbital of the carbocation
*Syn - the two ends of the double bond react from the same side
Anti - the two ends of the double bond react from opposite sides

Hydrogenation of Alkenes

Figure removed due to copyright reasons.

