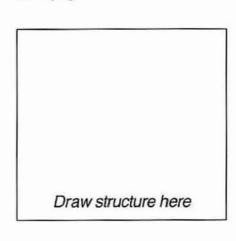
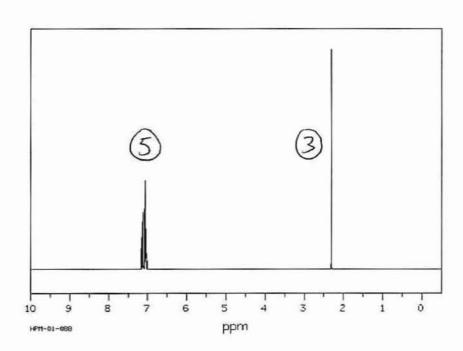
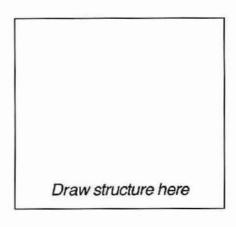
Massachusetts Institute of Technology Organic Chemistry 5.13

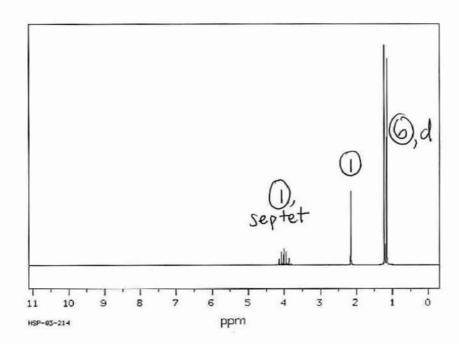
Fridav. S	eptember	30.	2005
-----------	----------	-----	------

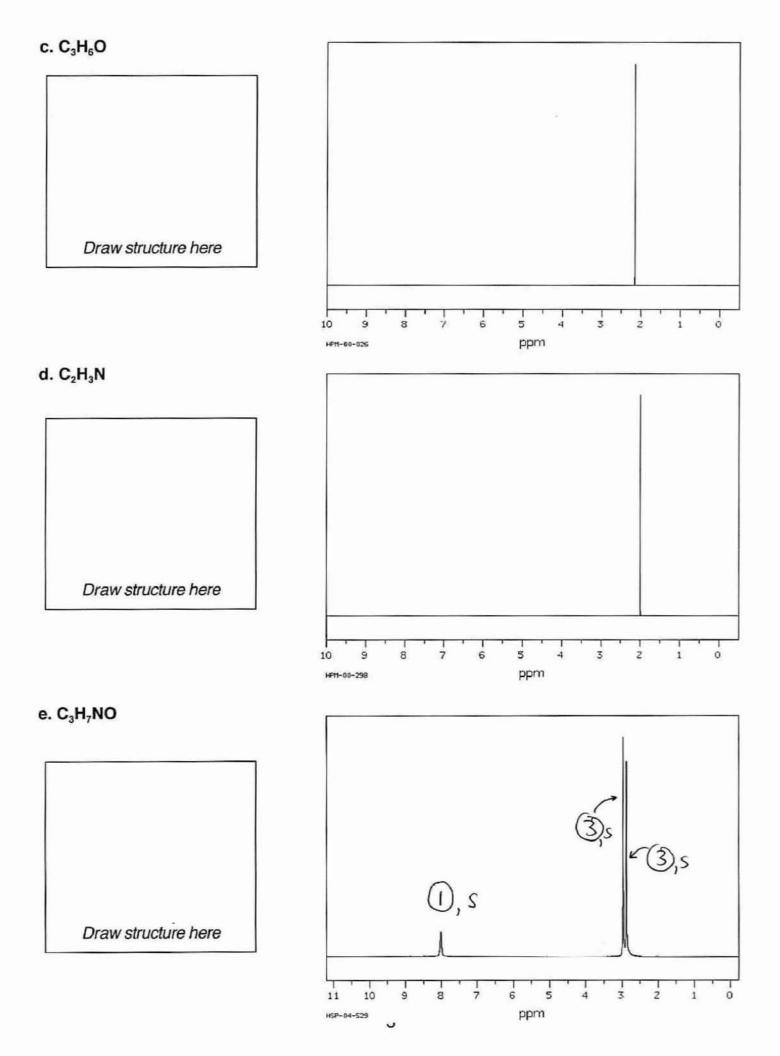

Prof. Timothy F. Jamison

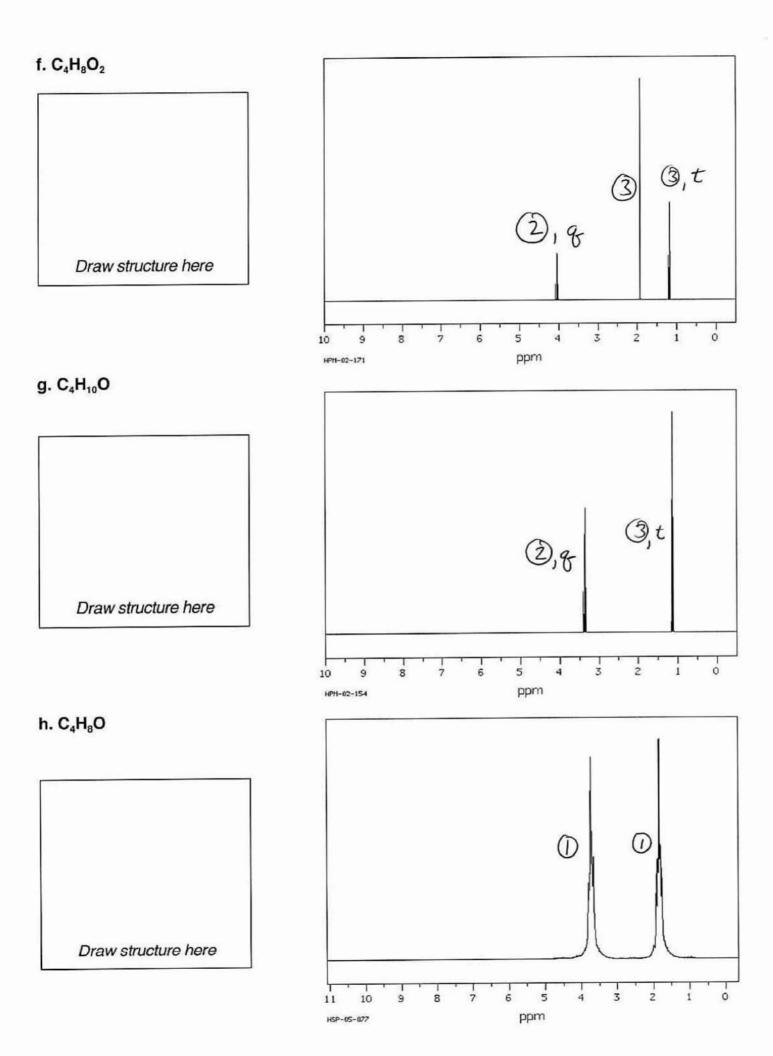

r riday, deptember 50, 2005		1 Tol. Timothy 1 . Damison
	Hour Exam #1	
Name		
(please both print and	l sign your name)	
Official Recitation Instructor		
Directions: Closed book	exam, no books, i	notebooks, notes, etc. allowed.
However, calculators, rulers, a	nd molecular mod	el sets are permitted.
Please read through the entire	exam before begi	nning, in order to make sure tha
you have all the pages and in o	order to gauge the	relative difficulty of each
question. Budget your time ac	cordingly.	
Show all of your work if you	wish to receive p	partial credit.
You should have 11 pages tota	al: 6 exam pages	including this page, 3 pages of
reference information, and 2 bl	ank pages for scra	atchwork.
Question:		Grader:
1/	40 points	
2/	30 points	
3/	30 points	
Total:/	100 points	

(40 points total - 5 points each) The molecular formulas and ¹H NMR spectra of 8 common organic solvents are provided below and on the following 2 pages. For each, neatly draw the entire structure (i.e., not the acronym) in the box provided. In some cases, relative integration values (circled numbers) and/or other information have been provided.


Note: Do **not** represent functional groups with partial molecular formulas or other abbreviations. For example, do not use "Ph" or " C_6H_5 " for a phenyl group. **Draw** the entire group (including hydrogen atoms).







b. C₃H₈O

EA C, 81.61; H, 11.06; N, 7.32

MS 191, 176.

¹³C NMR 162.7, 136.5, 118.9, 35.1, 31.9

¹H NMR 7.59 (t, J = 7.8, 1H), 7.14 (d, J = 7.8, 2H), 1.34 (s, 18H)

a. (10 points) Determine the molecular formula. Circle your final answer.

b. (5 points) Calculate the Index of Hydrogen Deficiency (IHD). Circle your final answer.

c. (2 points) How many "types of carbon" (chemically non-equivalent) does this compound have? **Circle** your final answer.

d. (3 points) How many "types of hydrogen" (chemically non-equivalent) does this compound have? **Circle** your final answer.

e. (10 points) In the space below, draw the structure of the molecule that is consistent with all of the data provided. Circle your final answer.

3. (30 points total) Answer the questions below about the structure that has the following data:

EA C, 75.69; H, 8.80

M⁺ 206

IR 3430 (broad), 1705 (strong)

¹⁸C NMR 181.4, 140.9, 137.0, 129.5, 127.4, 45.9, 44.1, 30.3, 22.5, 18.2

¹H NMR 11.9 (broad s, 1H), 7.21 (d, J = 7.7, 2H), 7.09 (d, J = 7.7, 2H), 3.70

(q, J = 7.0, 1H), 2.44 (d, J = 6.8, 2H), 1.84 (nonet (9 lines), J = 6.8,

1H), 1.49 (d, J = 7.0, 3H), 0.89 (d, J = 6.8, 6H)

a. (7 points) Determine the molecular formula. Circle your final answer.

b. (5 points) Calculate the Index of Hydrogen Deficiency (IHD). Circle your final answer.

c. (8 points) Which protons are coupled to which? Complete the tables below using the NMR data above. Write H1, H2, etc. or "none", as appropriate, in the box provided, and list **all protons** to which a given proton is coupled.

Proton(s)	∂(ppm)	Coupled to
H1	11.9	
H2	7.21	
НЗ	7.09	
H4	3.70	

Proton(s)	∂(ppm)	Coupled to
H5	2.44	
H6	1.84	
H7	1.49	
H8	0.89	

d. (10 points) Draw **all** of the possible **enantiomers and diastereomers of the unknown compound** that are consistent with all the data given. **Circle** your final answers.

e. (Extra credit – 5 points total) What is the common name of this over-the-counter pharmaceutical (3 points), and for which symptoms is it indicated (2 points)?

Infrared Spectra: Tables of Reference

X-H Region

Phenois and Alcohols ROH

3700-3500 sharp

or 3200-3600 broad (H-bonded)

Acids

RCO₂H

2800-3600 very broad

Amides and Amines

RCONHR

R₂NH

3300-3500

C-H bonds

C≡C-H

3100-3300 3000-3200

C=C-H C-C-H

2850-3000

RCHO

2700-2800

sp Region

Acetylenes	C≡C	2100
Nitriles	C≡N	2200
Ketenes	C=C=O	2150
Allenes	C=C=C	1950

Double Bond Region

Alkenes

C=C

1600-1670 weak unless conjugated

Imines

C=N

1600-1700

Nitro

-NO₂

1350-1550 (two bands)

Carbonyl Groups

Note: subtract ca. 30 cm-1 for conjugation (e.g. with a double bond or aromatic ring)

Anhydrides

RC(O)OCOR

1740-1780,

1800-1840

(two bands)

Acid Chlorides

RCOCI

1790-1815

Esters

RCO₂R

1725-1755

Acids

RCO₂H

1700-1725

Amides

RCONR₂

1630-1700

Urethanes

R2NCO2R

1700

Aldehydes

RCHO

1720-1740

Ketones

1710 (subtract ca. 30 cm-1 for conjugation)

6-membered and larger cyclic ketones

1710

1740

1715

1680

1780

1740

1770

1690-1740

1730

1650

¹H NMR Spectra: Tables of Reference

Average Chemical Shifts (δ) of α -Hydrogens in Substituted Alkanes^{*}

X	<u>CH3</u> X	RCH ₂ X	R ₂ CHX	
Н	0.233	0.9	1.25	
CH ₃ or CH ₂	0.9	1.25	1.5	
F	4.26	4.4		
Cl	3.05	3.4	4.0	
Br	2.68	3.3	4.1	
1	2.16	3.2	4.2	
OH	3.47	3.6	3.6	
OR	3.3	3.4		
OAr	3.7	3.9		
OCOR OCOAr	3.6	4.1	5.0	
SH	3.8 2.44	4.2 2.7	5.1	
SR	2.44	2.5		
SOR	2.5	<u> </u>	2.8	
SO ₂ R	2.8	2.9	3.1	
NR ₂	2.2	2.6	2.9	
NR-Ar	2.9	2.0		
NCOR	2.8		3.2	
NO ₂	4.28	4.4	4.7	
CHO	2.20	2.3	2.4	
COR	2.1	2.4	2.5	
COAr	2.6	3.0	3.4	
COOH	2.07	2.3	2.6	
COOR	2.1	2.3	2.6	
CONH ₂	2.02	2.2		
CR=CRCR1	2.0-1.6	2.3	2.6	
Phenyi	2.3	2.7	2.9	
Aryl §	3.0-2.5			
C≡CR	2.0		-	
C=CN	2.0	2.3	2.7	

^{*} The tabulated values are average values for compounds that do not contain another functional group within two carbon atoms from the indicated hydrogens.

Chemical Shifts of Hydrogens Bonded to Unsaturated Centers

Type	Unconjugated	Conjugated*
R ₂ C=CH ₂	4.6-5.0	5.4-7.0
R ₂ C=CHR	5.0-5.7	5.7-7.3
Aromatic	6.5-8.3	****
Nonbenzenoid aromatic	6.2-9.0	****
Acetylenic	2.3-2.7	2.7-3.2
Aldehydic	9.5-9.8	9.5-10.1
R ₂ NCHO	7.9-8.1	
ROCHO	8.0-8.2	

^{*} The position depends on the type of functional group in conjugation with the unsaturated group.

Chemical Shifts of Hydrogen Bonded to Oxygen, Nitrogen, and Sulfur

Functi	onal Group	Chemical S	Shift, δ
OH .	Alcohols	0.5 0.5-5	(Monomeric) (Associated)
	Phenols	4.5 4.5-8	(Monomeric) (Associated)
•	Enols	15.5	
	RCO₂H	9-12	(Dimeric)
	H-bonded to C=O	13-16	• .
NH ₂	Alkylamine	0.6-1.6	
	Arylamine	2.7-4.0	•
	Amide	7.8	
NH	Alkylamine	0.3-0.5	•
	Arylamine	2.7-2.8	
R ₃ NH ⁺	Ammonium salts	7.1-7.7	(in CF ₃ COOH)
SH	Aliphatic	1.3-1.7	
	Aromatic	2.5-4	

[§] Includes polycyclic and many heterocyclic aromatics.

Characteristic Functional Group Chemical Shifts in ¹³C NMR (ppm)

Alkanes		Organohalogen	
Methyl (RCH₃)	0-30	C–F	70-80
Methylene (RCH ₂ R')	15-55	C–CI	25-50
Methine (RCH(R')(R"))	25-55	C–Br	10-40
Quaternary (RC(R')(R")(R""))	30-40	C–I	<i>–</i> 20 - 10
Alkenes	100-150	Ketones, Aldehydes	185-220
Aromatic	120-160	Carboxyl Derivatives	
Alkynes	70-90	Acids	150-185
Nitriles	110-125	Esters	155-180
Alcohols, Ethers	50-90	Amides	150-180
Amines	40-60	Carbamates	150-160