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Lecture 19:  SPECTROSCOPY: PROBING MOLECULES WITH LIGHT1 
In practice, even for molecules that are very complex and poorly characterized, we would 
like to be able to probe molecules and find out as much about the system as we can so 
that we can understand reactivity, structure, bonding, etc.  One of the most powerful tools 
for interrogating molecules is spectroscopy.  Here, we tickle the system with 
electromagnetic radiation (i.e. light) and see how the molecules respond.  The motivation 
for this is that different molecules respond to light in different ways.  Thus, if we are 
creative in the ways that we probe the system with light, we can hope to find a unique 
spectral fingerprint that will distinguish one molecule from all other possibilities.  In 
order to understand how spectroscopy works, we need to answer the question: how do 
electromagnetic waves interact with matter?  

The Dipole Approximation 
An electromagnetic wave of wavelength λ, produces an electric field, E(r,t), and a 
magnetic field, B(r,t), of the form: 

E(r,t)=E0 cos(k·r – ωt) B(r,t)=B0 cos(k·r – ωt) 
where ω=2πν  is the angular frequency of the wave, the wavevector k has a magnitude 
2π/λ, and k (the direction the wave propagates) is perpendicular to both E0 and B0.  
Further, the electric and magnetic fields are related: 

E0· B0 = 0    E0 = c B0

Thus, the electric and magnetic fields are 
orthogonal and the magnetic field is a 
factor of c (the speed of light, which is 
1/137 in atomic units) smaller than the 
electric field.  Thus we obtain a picture 
like the one at the right, where the 
electric and magnetic fields oscillate 
transverse to the direction of propagation. 

Now, in chemistry we typically deal with 
the part of the spectrum from ultraviolet 
(λ ≈ 100 nm) to radio waves (λ ≈ 10 m)2.  Meanwhile, a typical molecule is about 1 nm in
size.  Let us assume that the molecule is sitting at the origin.  Then, in the 1 nm3 volume
occupied by the molecule we have:

k·r ≈ |k|   |r|  ≈ [2π/(100 nm)]  ×1 nm = 0.06 (dimensionless) 
Where we have assumed UV radiation (longer wavelengths would lead to even smaller 
values for k·r). Thus, k·r is a small number and we can expand the electric and magnetic 
fields in a power series in k·r: 

E(r,t)≈E0 [cos(k·0-ωt)+O(k·r)]≈E0 cos(ωt)
B(r,t)≈B0 [cos(k·0-ωt)+O(k·r)]≈B0 cos(ωt),

where we are neglecting terms of order at most a few percent.  Thus, in most chemical 
situations, we can think of light as applying two time dependent fields: an oscillating, 

1 Original notes written by Troy Van Voorhis for 5.61 in Fall, 2013 semester 
2 There are a few examples of spectroscopic measurements in the X-Ray region. In these cases, the wavelength can be very small and
the dipole approximation is not valid.  
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uniform electric field (top equation) and a uniform, oscillating magnetic field 
(bottom equation). This approximation is called the Dipole Approximation – 
specifically when applied to the electric (magnetic) field it is called the electric 
(magnetic) dipole approximation. If we were to retain the next term in the expansion, we 
would have what is called the quadrupole approximation.  The only time it is advisable to 
go to higher orders in the expansion is if the dipole contribution is exactly zero, as can 
happen, for example, due to symmetry in some cases.  In this situation, even though the 
quadrupole  (k•r) contributions may be small, they would certainly be large compared to 
zero and would need to be computed. 
  
The Interaction Hamiltonian 
How do these oscillating electric and magnetic fields couple to the molecule?  Well, for a 
system interacting with a uniform electric field E(t) the interaction energy is 
   HE t( ) = −µ̂ iE t( ) = −e r̂ iE t( )  
where µ  is the electric dipole moment of the system.  Thus, a uniform but time-
dependent electric field interacts with the molecular dipole moment.  The electric dipole 
moment is a quantum mechanical operator and can have off-diagonal matrix elements 
between eigenstates. 
 
Similarly, the magnetic field interacts with to the magnetic dipole moment, m. Magnetic 
moments arise from circulating currents and are therefore proportional to angular 
momentum – larger angular momentum means larger circulating currents and larger 
magnetic moments.  If we assume that all of the angular momentum in our system comes 
from an intrinsic spin angular momentum, I=(Ix , Iy ,Iz), then the magnetic moment is 
strictly proportional to I.  For example, for a particle with charge q and mass m then 

  
H! B t( ) = −m̂ iB t( ) = − q g

2m
Î iB t( )  

where g is a phenomenological factor (creatively called the “g-factor”) that takes into 
account the internal structure of the particle containing the intrinsic spin – for an electron 
ge=2.0023, while for a proton gp=5.5857.  There is no simple explanation for these g-
values. 
 
So now suppose that we have a molecule we are interested in, and it has a Hamiltonian, 

  H!
0( )

, when the field is off.  Then, when the field is on, the Hamiltonian will be 

   H
! t( ) =H!

0( )

+H! E
(1)
t( )+H! B

(1)
t( )  

Here we have  H!
(0)

and  H!
(1)

.  Actually, in most cases, the simultaneous effects of electric 
and magnetic fields are not important and we will consider one or the other: 

  H
! t( ) ≡H!

(0)
+H!

(1)
t( )               H!

(1)
t( ) ≡H! E t( )    or    H! B t( ) . 

Thus, in the presence of light, a molecule feels a time-dependent Hamiltonian.  This 
situation is quite different from what we have discussed so far.  Previously, our 
Hamiltonian has been time independent and our job has simply reduced to finding the 
eigenstates and eigen-energies of   H! .  Now, we have a Hamiltonian that varies with time, 

Bohr vs. 
nuclear 
magneton? 
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meaning that the energy eigenvalues and eigenstates of   H!  also change with time.  What 
can we say that is meaningful about a system that is constantly changing?   
 
Time Dependent Eigenstates 
As it turns out, the best way to think about this problem is to think about the eigenstates 
of   H!

(0)
.  When the field is off, each of these eigenstates evolves by just getting a phase 

factor: 
   H

! (0)
φn t( ) = En

(0)φn t( )            ⇒            φn t( ) = e−iEnt /"φn 0( )  
Thus, things like the probability density do not change because multiplying by the 
complex conjugate wipes out the phase factor: 
 

 
φn t( )

2
= e−iEnt /!φn 0( ){ }*e−iEnt /!φn 0( )=eiEnt /!φn 0( )*e−iEnt /!φn 0( )=  φn 0( )

2

 
 

Thus, when considering measurable quantities (which always involve complex 
conjugates) the eigenstates of the Hamiltonian appear not to change with time.  However, 
when the field is on the eigenstates will change with time.  In particular, we will be 
interested in the rate at which the field induces transitions between an initial eigenstate φi 
and a final state φf.  
 
To work out these rates, we first work out the time-dependence of some arbitrary state, 
Ψ(t).  We can expand Ψ(t) as a linear combination of the eigenstates:  
 Ψ t( ) = cn t( )φn t( )

n
∑  

where the cn(t) are the coefficients to be determined. Next, we plug Ψ(t) into the TDSE: 

 i!
"Ψ t( ) = ĤΨ t( )  

 

 

⇒ i! ∂
∂t

cn
n
∑ (t)φn (t)=H" cn

n
∑ (t)φn (t)

⇒ i!
n
∑ #cn (t)φn (t)+ cn (t) #φn (t)⎡⎣ ⎤⎦= cn

n
∑ (t) H"

(0)
+H"

(1)
(t)( )φn (t)

⇒ i!
n
∑ #cn (t)φn (t)−

iEn

!
cn (t)φn (t)

⎡

⎣⎢
⎤

⎦⎥
= cn

n
∑ (t) En +H"

(1)
(t)( )φn (t)

⇒ i!
n
∑ #cn (t)φn (t)+

n
∑ En cn (t) #φn (t)= cn

n
∑ (t) En +H"

(1)
(t)( )φn (t)

⇒ i! #cn
n
∑ (t)φn (t)= cn

n
∑ (t)H"

(1)
(t)φn (t) ***

 

  

Use TDSE 
on n(t) 

[cancel the 
repeated term] 
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Next, we multiply both sides of this equation by the final state we are interested in (φf*) 
and then integrate over all space.  On the left hand side, we get: 

 
i! ∫ φ f

* (t) "cn
n
∑ (t)φndτ = i! "cn

n
∑ (t) ∫ φ f

* (t)φn (t)dτ = i!"cf (t)  

 δnf (orthonormality) 
 
Meanwhile, multiplying on the left by φ f

*  and integrating over all space (dτ) on the right 
hand side of the *** equation we get: 

 
∫ φ f

* (t) cn
n
∑ (t)H!

(1)
(t)φn (t)dτ = cn

n
∑ (t) ∫ φ f

* (t)H!
(1)
(t)φn (t)dτ . 

Combining terms gives: 

  
⇒ i!"cf t( ) = φ f

* t( )H#
(1)
t( )φn t( )dτ∫ cn t( )

n
∑ . Eq. 1 

 
Up to this point, we haven’t used the form of H1 at all.  We note that we can rewrite the 
light-matter interaction as: 
  H

! (1) t( ) = V̂ cos ωt( )  

where, for electric fields  V̂ ≡ −er̂ iE0  and for magnetic fields 
 
V̂ ≡ −

q g
2m
Î iB0 .  In either 

case, we can rewrite the cosine in terms of complex exponentials: 
Ĥ1 t( ) = V̂ 1

2 e
iωt + e−iωt( )  

Plugging this into Eq.1 above gives: 
 
 

 

i!"cf (t)= ∫
n
∑ φ f

* (t) 12 V̂ eiωt + e−iωt( )φn (t)dτ cn (t)

= ∫
n
∑ φ f

* (0)eiE f t /! 1
2 V̂ eiωt + e−iωt( )e−iEnt /!φ(0)dτ cn (t)

= ∫
n
∑ φ f

* (0) 12 V̂φn (0)
# $%%% &%%%

dτ e−i En−Ef −!ω( )t /! + e−i En−Ef +!ω( )t /!( )cn (t)

i!"cf (t) =
n
∑ 1

2 V̂fn e−i En−Ef −!ω( )t /! + e−i En−Ef +!ω( )t /!( )cn (t) ****

 

Note that both of the complex exponential terms are rapidly oscillating 
except when En – Ef = ± !ω:  RESONANCE! 
 

[resonance terms] 
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Tickling the Molecule With Light  
To this point we haven’t made any approximations to the time evolution.  We now make 
some assumptions that allow us to focus on one particular i→f transition.  We make two 
physical assumptions: 

1) The molecule starts in a particular initial eigenstate, φi, at t=0. This sets the 
initial conditions for our coefficients: only the coefficient of state i can be 
non-zero initially: 

 cn 0( ) = 0 if   n ≠ i, ci 0( ) =1  
It is easy to verify that this choice gives the desired initial state: 

 
ψ 0( ) = cn 0( )φn 0( )

n
∑ = 0+0+ ...1iφi 0( )+0....= φi 0( )  

2) The interaction with the oscillating field only has a small effect on the 
dynamics.  This is certainly an approximation, and it will not always be true.  
We can guarantee its validity in one limit: if we reduce the intensity of our 
light source sufficiently, we will reduce the strength of the electric and 
magnetic fields to the point where the influence of the light is small.  As we 
turn up the intensity, there may be additional effects that will come into play, 
and we will come back to this possibility later on.  However, if we take this 
assumption at face value, we can assume on the right hand side of the **** 
equation that the coefficient, cn, of all states other than φi will be much 
smaller than ci for all times:  

 cn t( )≪ ci t( )           if   n ≠ i         ci t( ) ≈ 1  
Where, in the second equality we have noted that if all the other coefficients 
are tiny, ci must be approximately 1 if we want our state to stay normalized. 
 

These two assumptions lead to an equation for the coefficients of the form: 

 

i!"cf t( ) = 1
2Vfn e

−i En−Ef −!ω( )t /! + e−i En−Ef +!ω( )t /!( )cn t( )
n
∑

⇒ i!"cf t( ) = 1
2Vfi e

−i Ei−Ef −!ω( )t /! + e−i Ei−Ef +!ω( )t /!( )ci t( )
= 1

2Vfi e
−i Ei−Ef −!ω( )t /! + e−i Ei−Ef +!ω( )t /!( ).

 

Now we can integrate this new equation to obtain cf t( ) : 

 
i!cf T( ) = 1

2Vfi e−i Ei−Ef −!ω( )t /! + e−i Ei−Ef +!ω( )t /!( )dt
0

T

∫  

 
⇒ cf T( ) =

Vfi

2i!
e−i Ei−Ef −!ω( )t /! + e−i Ei−Ef +!ω( )t /!( )dt

0

T

∫ .     Eq. 2 

 
This formula for cf T( )  is only approximate, because of assumption 2). If we wanted to 
improve our result for cf (T), we could plug our approximate final expression (Eq. 2) back 
in on the RHS of Eq. 1 and then integrate the equation again.  This would lead to a better 
approximate solution for cf T( ) . Most importantly, while our approximate solution is 
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linear in the interaction matrix element, Vfi , after plugging the result back in, we would 
get some terms that are quadratic in Vfi .  By assumption 2) above, these quadratic terms 
will be much smaller than the linear ones we have retained above and so we feel safe in 
neglecting them.  For these reasons, assumption 2) is known as the linear response 
approximation. 
 
We now make the final rearrangement: we recall that we are interested in the probability 
of finding the system in the state f.  This is given by cf T( )

2
: 

 
Pfi T( ) ≡ cf T( )

2
=
Vfi

2

4!2
e−i Ei−Ef −!ω( )t /! + e−i Ei−Ef +!ω( )t /!( )dt

0

T

∫
2

 

where the subscript “fi” reminds us that this is the probability of ending up in the final 
state f given that we started in the state i. 
 
Fermi’s Golden Rule 
Now, usually our experiments take a long time relative to the oscillation period of the 
electromagnetic waves.  In one second a light wave will oscillate trillions of times.  Thus, 
our observations are likely to correspond to the long-time limit lim

T→∞( )  of the above 

expression: 

 
Pfi =

Vfi
2

4!2
lim
T→∞

e−i Ei−Ef −!ω( )t /! + e−i Ei−Ef +!ω( )t /!( )dt
0

T

∫
2

 

and in fact, we are usually not interested in probabilities, but rates, which are 
probabilities per unit time (obtained by inserting the factor 1/T): 

 
Wfi =

Vfi
2

4!2
lim
T→∞

1
T

e−i Ei−Ef −!ω( )t /! + e−i Ei−Ef +!ω( )t /!( )dt
0

T

∫
2

 

This integral looks very difficult.  However, it is easy to work out with pictures because 
the integrand oscillates symmetrically about zero.  Note that both the real and imaginary 
parts of the integrand oscillate.  Thus, we will be computing the integral of something 
that looks like: 

 
Thus, as long as the integrand oscillates, the positive regions will cancel the negative 
ones and the integral will be zero.  There only two situations where the integrand is not 
oscillatory:  Ei −Ef −!ω = 0  (in which case the first term is unity) and  Ei −Ef +!ω = 0  
(in which case the second term is unity).  We can therefore write 

 
Wfi ∝

Vfi
2

4!2
δ Ei −Ef −!ω( )+δ Ei −Ef +!ω( )⎡⎣ ⎤⎦  
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where δ(x) is a function that is defined to be non-zero only when x=0. This resulting 
equation is called Fermi’s golden rule.  It gives us a way of predicting the rate of any 
i→f transition in any molecule induced by an electromagnetic field of arbitrary frequency 
propagating in any direction. This formula – as well as generalizations that relax the 
electric dipole and linear response approximations – is probably the single most 
important relationship in terms of how chemists think about spectroscopy, and so we will 
dwell a bit on the interpretation of the various terms.   
 
On the one hand, the probability of an i→f transition is proportional to 

Vfi
2
= φ f *V̂φi dτ∫

2
. 

 
Thus, if the integral of the interaction operator V̂  between the initial and final states 
is zero, then the transition never happens.  This is called a selection rule, and a 
transition that does not occur because of a selection rule is said to be forbidden.  For 
example, in the case of the electric field, 

Vfi
2
= φ f * µ̂ ⋅E0φi dτ∫

2
= E0 ⋅ φ f * µ̂φi dτ∫

2
≡ E0 ⋅µ fi

2
. 

Thus, for molecules interacting with electric fields, the transition i→f is forbidden unless 
the integral of the dipole operator between states i and f is nonzero.  This type of 
integral is often called a transition dipole for this reason – when the transition dipole is 
very large, the transition is very likely.  Meanwhile, in the case of a magnetic field,  

Vfi
2
= φ f *m̂ ⋅E0φi dτ∫

2
=
q g
2m
B0 ⋅ φ f * Îφi dτ∫

2

≡
q g
2m
B0 ⋅ I fi

2

. 

Thus, a magnetic field can only induce an i→f transition if the integral of one of the 
spin angular momentum operators is non-zero between the initial and final states.  
Selection rules of this type are extremely important in determining which transitions will 
and will not appear in our spectra. 
 
The second thing we note about Fermi’s Golden 
Rule is that it enforces energy conservation.  We 
note that the energy carried by a photon is  !ω . 
The δ-function portion is only non-zero if  

 Ei −Ef = −!ω  (second term) or  

 Ei −Ef = !ω  (first term).  Thus, the transition 
only occurs if the energy difference between 
the two states exactly matches the energy of 
the photon we are sending in.  This is depicted 
in the picture at right above.  The way these 
terms are interpreted are as follows: in the first 
case, the light increases the energy in the system by exactly one photon worth of energy.  
Here, we think of a photon being absorbed by the molecule and exciting the system.  In 
the second case, the light reduces the energy of the system by exactly one photon worth 
of energy.  Here, we think of the molecule emitting a photon and relaxing to a lower 
energy state.  The fact that photon emission by a molecule can be induced by light is 

Ef 

Ei 

 

Ei 

Ef 
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called stimulated emission, and is the principle on which lasers are built: basically, when 
you shine light on an excited molecule, you can get more photons out than you put in. 
 
In order to make much more progress with spectroscopy, we have to consider some 
specific choices of the molecular Hamiltonian,  H! 0 , which we do in the next several 
lectures.  Depending on the system at hand the energy conservation and selection rules 
give different spectral signatures that ultimately allow us to interpret the spectra of real 
molecules and to characterize their physical properties. 
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