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ROBERT FIELD: OK, let's get started. So last time we talked about the one-dimensional wave equation, which is

a second-order partial differential equation. This is not a math course. If you have a second-

order differential equation, there will be two linearly independent solutions to it. And that's

important to remember.

Now, there are three steps that we use in approaching a problem like this. Does anybody want

to tell me what those three steps are? Yes?

AUDIENCE: [INAUDIBLE] it has separate functions that take only one variable.

ROBERT FIELD: OK, that's most of it. You want to solve the general equation, and one way to solve the general

equation is to try to separate variables. Always you want to separate variables. Even if it's not

quite legal, you want to find a way to do that because that breaks the problem down in a very

useful way. So the first step is the general solution, and it involves trying something like this

where we say u of x and t is going to be treated in the separable form. If it doesn't work, you're

going to get 0. You're going to get the solution. The only solution with separated variables is

nothing happening. And so that's unfortunate if you do work and you get nothing for it, but life

is complicated.

So then after you do the general solution, what's next? Yes?

AUDIENCE: You need to set boundary conditions?

ROBERT FIELD: Yes. Now if it's a second-order differential equation, you're going to need two boundary

conditions. And when you impose two boundary conditions, the second one gives some sort of

quantization. It makes the solutions discrete or that there is a discrete set rather than a

continuous set. The general solution is more or less continuous, or continuous possibility.

So we have now the boundary conditions, and that gives us something that we can start to

visualize. So what are the important things that, if you're going to be drawing pictures rather

than actually plotting some complicated mathematical function, what are the first questions you



ask? Yes?

AUDIENCE: Is it symmetric or asymmetric?

ROBERT FIELD: Yes, if the problem has symmetry, the solutions will have symmetry. But there's more. I want

another, my favorite.

AUDIENCE: Where's it start?

ROBERT FIELD: I'm sorry?

AUDIENCE: Where does it start? So t equals 0 or x equals 0.

ROBERT FIELD: The initial condition is really the next thing I'm going to ask you about, and that's called the

pluck. You're right on target. But now if you're going to draw a picture, the best thing you want

to do to draw a picture is have it not move. So you want to look at the thing in position, and

what are the things about the position function that you can immediately figure out and use in

drawing a cartoon?

AUDIENCE: Nodes.

ROBERT FIELD: Yep. So how many nodes and where are they? Are they equally spaced? And that's the most

important thing in drawing a picture, the number of zero crossings that a wave function has,

and how are they distributed? Their spacing of nodes is half the wavelength, and the

wavelength is related to momentum. And so I'm jumping into quantum mechanics, but it's still

valid for understanding the wave equation.

So we want the number of nodes for each specific solution satisfying the boundary conditions

and the spacing and the loops between nodes. Are they all identical? Is there some systematic

variation in the magnitude of each of the loops between nodes? Because if you have just a

qualitative sense for how this works, you can draw the wave function, and you can begin to

make conclusions about it.

But it all starts with nodes. Nodes are really important. And quantum mechanics, the wave

functions have nodes. You can't do better than focus on the nodes.

And then I like to call it pluck, but it's a superposition of eigenstates. And those superpositions

for this problem can move. And so-- you're missing a great-- anyway. And so you want to

know, what is the kind of motion that this thing can have?



And so one of the things-- this is really the three steps you go through in order to make a

picture in which you hang up your insights. And so if there's one state or two states, one state

is just going to be standing waves. Two states is all the complexity you're ever going to need.

And if two states have different frequencies, there will be motion, and the motion can be side-

to-side motion or sort of breathing motion where amplitude moves in from the turning-point

region to the middle and back out again. And so you can be able to classify what you can

understand and to imagine doing experiments based on this simplified version of the flux.

In my opinion, the most important thing you can do as a professional quantum machinist and

in preparation for exams is to be able to draw these cartoons quickly, really quickly. That

means you have to think about them in advance.

And so this recipe is how you're going to understand quantum mechanical problems too. And

this differential equation is actually a little more complicated than the first few that we're going

to encounter because the first few problems we're going to face are not time dependent.

There may still be a separation of variables situation and imposing boundary conditions and so

on, but there is no motion. But eventually we'll get motion because our real world has motion,

and quantum mechanics has to reproduce everything that our real world does.

So, we're going to begin quantum mechanics, and first of all I will describe some of the rules

we have to obey in building a quantum-mechanical picture. And then I'll approach two of the

easiest problems, the free particle and the particle in an infinite box.

So we have the one-dimensional Schrodinger equation, and the one-dimensional Schrodinger

equation looks like the wave equation. And why? Because waves interfere with each other. We

can have constructive and destructive interference. Almost everything that is wonderful about

quantum mechanics is the solutions to this Schrodinger equation also exhibit constructive and

destructive interference. And that's essential to our understanding of how quantum mechanics

describes the world.

The next thing I want to do is talk a little bit about postulates. Now I'm going to be introducing

the quantum-mechanic postulates as we need them as opposed to just a dry lecture of these

strange and wonderful things before we're ready for them.

But a postulate is something that can't be proven right. It can be proven wrong. And we build a

system of logic based on these postulates.



Now one of the great experiences in my life was one time when I visited the Exploratorium in

San Francisco where there are rather crude, or at least when I visited almost 50 years ago,

there were rather crude interactive experiments where people can turn knobs and push

buttons and make things happen. And the most wonderful thing was really young kids trying to

break these exhibits. And what they did is by trying to break them they discovered patterns,

some of them, and that's what we're going to do. We're going to try to break or think about

breaking postulates and then see what we learn.

So, let's begin. We have operators in quantum mechanics. And we denote them either with a

hat or as a boldface object. We start using this kind of notation when we do matrix mechanics,

which we will do, but this is just a general symbol for an operator. And an operator operates on

a function and gives a different function. It operates to the right, or at least we like to think

about it as operating to the right. If we let it operate to the left, we have to figure out what the

rules are, and I'm not ready to tell you about that.

So this operator has to be linear. And so if we have an operator operating on a function, A f

plus bg, It has to do this. Now you'd think, well, that's pretty simple. Anything should do that.

So taking the derivative does that. Doing an integral does that, but taking the square root

doesn't. So taking the square root-- an operator says take the square root, well, that's not a

linear operator. Now the only operators in quantum mechanics are linear operators.

We have eigenvalue equations. So we have an operator operating in some function. It gives a

number and the function back again. And this is called the eigenvalues, and this is the

eigenfunction.

AUDIENCE: Dr. Field?

ROBERT FIELD: Yes?

AUDIENCE: In the [INAUDIBLE] that should be b times A hat [INAUDIBLE].

ROBERT FIELD: What did I do? Well, it should just be-- sorry about that. I'm going to make mistakes like this.

The TAs are going to catch me on it, and you're going to do it too.

All right, so now here we have an operator operating on some function. And this function is

special because when the operator operates on it, it returns the function times a number, the

eigenvalue and the eigenfunction. We like these. Almost all quantum mechanics is expressed



in terms of eigenvalue equations.

Operators in quantum mechanics-- so for every physical quantity in non-quantum-mechanical

life there corresponds an operator in quantum mechanics. So for the coordinate, the operator

is just the coordinate. For the momentum, the operator is minus ih bar partial with respect to x

or derivative with respect to x. Now this is not too surprising, but this is really puzzling because

why is there an imaginary number? This is the square root of minus 1, which we call i. Why is

that there and why is the operator a derivative rather than just some simple thing?

Another operator is the kinetic energy, and the kinetic energy is p squared over 2m. And so

that comes out to be minus h bar squared over 2m second partial with respect to x.

Well, it's nice that I don't have to memorize this because I can just square this and this pops

out, but you have to be aware of how to operate with complex and imaginary numbers. And

there are so many exercises on the problem set, so you should be up to date on that.

And now the potential is just the potential. And now the most important operator, at least when

we start out, is the Hamiltonian, which is the operator that corresponds to energy, and that is

kinetic energy plus potential energy. And this is called the Hamiltonian, and we're going to be

focusing a lot on that. So these are the operators you're going to care about.

The next thing we talk about is commutation rules or commutators. And one really important

commutator is the commutator of the coordinate with the conjugate momentum, conjugate

meaning in the same direction. And that is defined as xp minus px. And the obvious thing is

that this commutator would be 0. Why does it matter which order you write things? But it does

matter. And, in fact, one approach to quantum mechanics is to start not with the postulates

that you normally deal with but a set of commutation rules, and everything can be derived from

the commutation rules. It's a much more abstract approach, but it's a very powerful approach.

So this commutator is not zero. And how do you find out what a commutator is? Well, you do

xp minus px, operate on some function, and you find out. And you could do that. I could do

that. But the commutator is going to be equal to ih bar.

Now there is a little bit of trickiness because the commutator xp is ih bar and px is minus ih

bar. And so I don't recommend memorizing it. I recommend being able to do this operation at

the speed of light so you know whether it's plus ih bar or minus ih bar because you get into a

whole lot of trouble if you get it wrong. So this is really where it all begins, and this is why you



can't make simultaneously precise measurements of position and momentum, and lots of

other good things.

And then we have wave functions. So wave function for when the time independent

Hamiltonian is a function of one variable, and it contains everything we could possibly know

about the system.

But this strange and wonderful thing, which leads to all sorts of philosophical debates, is that

this guy, which contains everything that we can know, can never be directly measured. You

can only measure what happens when you act on something with a given wave function. You

cannot observe the wave function. And for a subject area where the central thing is

unobservable is rather spooky.

And a lot of people don't like that approach because it says we've got this thing that we're

relying on, but we can't observe it. We can only observe what we do when we act on it. And

usually the action is destructive. It's destructive of the state of the system. It causes the state

of the system to give you a set of possible answers, and not the same thing each time. So it's

really weird.

So we have wave functions. And we can use the wave function to find the probability of the

system at x with a range of x, x to x plus dx. And that's psi star x psi of x dx.

So you notice we have two wave functions, the product of two, and this star means takes a

complex conjugate. So if you have a complex number z is equal to x plus iy-- real part,

imaginary part-- and if we take z star, that's x minus iy.

So these wave functions are complex functions of a real variable. And so we do things like

take the complex conjugate, and you have to become familiar with that.

Now we have what we call the expectation value or the average value, and we denote this as

A. So for the state function psi, we want the average value of the operator A. Now in most life,

that symbol is not included just because people assume you know what you're doing. And this

is psi star A hat psi dx over psi star psi dx. And this is integral from minus infinity to infinity.

So this down here is a normalization integral. Now we normally deal with state functions which

are normalized to 1, meaning the particle is somewhere. But if the particle can go anywhere,

then normalization to 1 means it's approximately nowhere. And so we have to think a little bit

about what do we mean by normalization, but this is how we define the average value or the



expectation value of the quantity A for the state psi. So this is just a little bit of a warning that,

yeah, you would think this is all you need, but you also need to at least think about this.

That's great. I'm at the top of the board and we're now at the beginning.

So the Schrodinger equation is the last thing, and that's the Hamiltonian operating on the

function and gives an energy times that function. And if it's an eigenvalue, then we have this

eigenvalue equation. We have these symbols here. So that's the energy associated with the

psi n function.

So now we're ready to start playing games with this strange new world. And so let's start out

with the free particle. Now because the free particle has a complicated feature about how do

we normalize it, it really shouldn't be the first thing we talk about. But it seems like the simplest

problem, so we will.

So what's the Hamiltonian? The Hamiltonian is the kinetic energy, minus h bar squared, or 2m

second derivative with respect to x plus the potential energy, V0. Free particle, the potential is

constant. We normally think of it as the potential is zero, but there is no absolute scale of a

zero of energy, so we just need to specify this.

And so we want to write the Schrodinger equation, and we want to arrange it in a form that is

easy to solve. There is two steps to the rearrangement, and I'll just write the final thing. So the

second derivative of psi is equal to minus 2m over h bar squared times E minus V0 psi. So this

is the differential equation that we have to solve. So there was a little bit of rearrangement

here, but you can do that.

So the second derivative of some function is equal to some constant times that function. We've

seen that problem before. It makes a lot of difference whether that constant is positive or

negative, and it better, because if we have a potential V0 and we have an energy up here,

well, that's perfectly reasonable. The particle can be there, classically.

But suppose the energy is down here. If the zero of energy is here, you can't go below it.

That's a classically forbidden situation. And so for the classically allowed situation, the quantity,

this constant, is negative.

For the classically forbidden situation, this constant is positive. You've already seen the big

difference in the way a second derivative, this kind of equation, works when the constant is



positive or negative. When this constant is negative, you get oscillation. When this constant is

positive, you'll get exponential.

Now we're interested in a free particle, so free particle can be anywhere. And we insist that the

solution to our quantum-mechanical problem, the wave function is what we say well behaved.

So well behaved has many meanings, but one of them is it never goes to infinity.

Another is that when you go to infinity, the wave function should go to zero. But there's also

things about continuity and continuity of first derivatives and continuity of second derivatives.

We'll get into those, but you know immediately that if this constant is positive, you get an

exponential behavior, and you get the e to the ikx and e to the-- not ik-- e to the kx and e to

the minus kx. And one of those blows up at either positive infinity or negative infinity.

So it's telling you that in agreement with what you expect for the classical world, an energy

below the constant potential is illegal. It's illegal when this situation persists to infinity. But we'll

discover that it is legal if the range of coordinate for which the energy is less than the potential

is finite. And that's called tunneling, and tunneling is a quantum-mechanical phenomenon. We

will encounter that.

So we know from our experience with this kind of differential equation that the solutions will

have the form sine kx and cosine kx. But we choose to use instead e to the ikx and e to the

minus ikx because this cosine kx is 1/2 e to the ikx plus e to the minus ikx. And so we can use

these functions because they're more convenient, more memorable. All the integrals and

derivatives are trivial. And so we do that.

So the differential equation-- and we saw before that we already have what k is. So minus k

squared is minus 2m over h bar squared-- minus 2m over h bar squared E minus V0.

We take the derivative of this function. This is the function, and this is the eigenvalue. We take

the second derivative with respect to x. We get an ik from this term and then another ik, which

makes minus k squared. And we get a minus ik and another minus ik, and that gives a minus k

squared. And so, in fact, this is an eigenvalue equation. We have the form where this equation

is an eigenfunction. With this, we have everything.

So the energies for the free particle, h bar k over h bar k squared over 2m plus V0, so this is

an eigenfunction, and this is the eigenvalue associated with that function. We're done. That

was an easy problem. I skipped some steps because it's an easy problem and I want you to



go over it and make sure that you understand the logic and can come to the same solution.

Let's take a little side issue. Suppose we have psi of x is e to the ikx. Well, we're going to find

that this is an eigenfunction of p, and the eigenvalue or the expectation value of p is h bar k.

And if we had minus e to the minus ikx, then what we'd get is minus h bar k.

So we have this relationship between p, expectation value, and h bar k. So this corresponds to

the particle going in the positive x direction, and this corresponds to the particle going in the

negative x direction. Everything is perfectly reasonable. We have solutions to the Schrodinger

equation for the free particle. The solutions to the free particle are also solutions to the

eigenvalue equation for momentum. And the two possible eigenvalues for a given k are plus h

bar k minus h bar k.

Now that's fine. So everything works out. We're getting things, although we have the definition

of the momentum having a minus 1, an i factor, and a derivative factor. Everything works.

Everything is as you would expect. And the general solution to the Schrodinger equation can

have two different values, the superposition of these two.

Right now, this wave function is the localized overall space. Now if we want to normalize it,

we'd like to calculate integral minus infinity to infinity of psi star x psi of x dx.

This is why we like this notation because suppose we have a function like this, psi star-- well,

actually like this. Psi star is equal to a star e to the minus ikx plus b star e to the ikx, and psi is

a e to the plus ikx. This would be e to the minus ikx.

And so when we write this integral, what we get is integral of psi star psi dx is equal to a

squared integral minus infinity to infinity of a squared plus b squared dx. So we have two

constants which are real numbers because they're square modulus. They're additive. And

we're integrating this constant from minus infinity to infinity. We'll get infinity. We can't make

this equal to 1.

So we have to put this in our head and say, well, there's a problem when you have a wave

function that extends over all space. It can't be normalized to 1, but it can be normalized so

that for a given distance in real space, it's got a probability of 1 in that distance. So we have a

different form of normalization. But when we actually calculate expectation values, we can still

use this naive idea of the normalization interval and we get the right answer, even though

because both the numerator and denominator go to infinity and those infinities cancel and



everything works out.

This is why we don't do this first usually because there's all of these things that you have to

convince yourself are OK. And they are and you should.

But now let's go to the famous particle in a box. It's so famous that we always use this

notation. This is particle in an infinite box, and that means the particle is in a box like this

where the walls go to infinity. And so we normally locate this box at a place where this is the x

coordinate and this is the potential energy, and the width of the box is a. And we normally put

the left edge of the box at zero because that problem is a little easier to solve than the more

logical thing where you say, OK, this box is centered about zero.

And that should bother you because anytime you're interested in asking about the symmetry

of things you'll want to choose a coordinate system which reflects that. Don't worry. I am going

to ask you about symmetry, and it's a simple thing to take the solution for this problem and

move it to the left by a over 2.

So we have basically a problem where the potential is equal to 0 for 0 is less than or equal to x

less than or equal to a, and it's equal to infinity when x is less than 0 or greater than a. So

inside the box it looks like a free particle, but it can't be a free particle because there's got to

be nodes at the walls.

We know that outside the box, the wave function has to be 0 everywhere because it's

classically forbidden, strongly forbidden. We know that the wave function psi is continuous. So

if it's at 0 outside, it's going to be 0 at the wall. And so the wave functions have boundary

conditions where, at the wall, the wave function goes to 0.

So now we go and we solve this problem. And so the Schrodinger equation for the particle in

the box where V of x is 0. Well, we don't need it. We just have the kinetic-energy term, h bar

squared over 2m second derivative with respect to x. Psi is equal to e psi.

Again, we rearrange it. And so we put the derivative outside, and we have minus 2me over h

bar squared psi. And this is a number. And so we just call it minus k squared psi. We know

what that k is as long as we know what the energy is, and k squared is equal to 2me over h

bar squared.

Now we have this thing which is equal to a negative number times a wave function, and we

already know we have exponential behavior. But in this case, we use sines and cosines



because it's more convenient.

So psi of x is going to be written as A sine kx plus B cosine kx. This is the general solution for

this differential equation where we have a negative constant times the function. So the

boundary condition, psi of 0-- well, psi of 0, this is 0, but this part is 1. So that means that psi of

0 has to be 0, so B has to be equal to 0. And here, the other boundary condition, that also has

to be equal to 0, and that has to be A sine ka. And ka has to be equal to n times pi in order to

satisfy this equation. Sine is 0 at 0, pi, 2 pi, 3 pi, et cetera.

So k is equal to n pi over a. And so we have the solutions. Psi of x is equal to A sine np a over

x.

And so we could put a little n here. And this is starting to make you feel really good because

for all positive integers there is a solution. There's an infinite number of solutions. And their

scaling with quantum number is trivial. And it's really great when you solve an equation and

you are given an infinite number of solutions.

Well, there's one thing more you have to do. You have to find out what the normalization

constant is, so you do the normalization integral. And when you do that, you discover that this

is equal to 2 over a square root sine n pi over a. So these are all the solutions for the particle

in an infinite box, all of them.

And the energies you can write as n squared times h squared over 8 m a squared or n

squared times E1.

There's another thing. n equals 0. If n is equal to 0, the wave function corresponding to n

equals 0 is 0 everywhere. The particle isn't in the box. So n equals 0 is not a solution. So the

solutions we have-- n equals 1 2, et cetera up to infinity, and the energies are integer square

multiples of a common factor.

This is wonderful because basically we have a problem. Maybe it's not that interesting now

because why do we have infinite boxes and stuff like that? But if you ask, what about the ideal

gas law? We have particles that don't interact with each other inside a container which has

infinite walls. And I can tell you that in 5.62, there's a three-line derivation of the ideal gas law

based on solutions to the particle in a box.

Also, we often have situations where you have molecules where there's conjugation so that



the molecule looks like a not quite flat bottom box with walls. And this equation enables you to

learn something about the electronic energy levels for linear conjugated molecules. And this

leads to a lot of qualitative insight into problems in photochemistry.

Now the most important thing, in my opinion, is being able to draw cartoons, and these

cartoons for the solutions the particle in a box look like this. So what you frequently do is draw

the potential, and then you draw the energy levels and wave functions. I have to cheat a little

bit.

So number of nodes-- number of nodes, internal nodes. We don't count zeros at the walls.

The number of nodes is n minus 1.

The maximum of the wave function is always 2 over a. So here 2 over a, here 2 over a, here

minus 2 over a i square root of 2 over a. This slope is identical to this slope. This slope is

identical to this slope which is identical to that slope. So there's a tremendous amount that you

can get by understanding how the wave function looks and drawing these cartoons.

And so now if instead we were looking at problems where, instead of a particle in a box like

this, we have a little dimple in the bottom of the box or we have something at the bottom or the

bottom of the box is slanted. You should be able to intuit what these things do to the energy

levels, at least have the beginning of an intuition.

So, we have an infinite number of oscillating solutions. That means that we could solve the

problem for any kind of a box as long as it has vertical walls, and that's called a Fourier series.

So for a finite range, we can describe the solution to any quantum-mechanical infinite box with

a terrible bottom, in principle, by a superposition of our basis functions. That's what we call

them.

Now, there are several methods for doing the solution of a problem like this efficiently. And

you're going to see perturbation theory. And at the end of the course, you're going to see

something that will really knock your socks off which is called the discrete variable

representation. And that enables you to say, yeah, well, potential does terrible things. I solved

the problem by not doing any calculation at all because it's already been done.

So these things are fantastic that we have an infinite number of solutions to a simple problem.

We're always looking for a way to describe a simple problem or maybe not so simple problem

with an infinite number of solutions where the energies for the solutions and the wave



functions behave in a simple n-scaled, quantum-number-scaled way.

And this provides us with a way of looking at what these things do in real life. You do an

experiment on an eigenfunction of a box like this, and it will have certain characteristics. And it

tells you, oh, if I measured the energy levels of a pathological box, the quantum-number

dependence of the energy levels has a certain form, and each of the constants in that special

form sample a particular feature of the pathological potential.

And that's what we do as spectroscopists. We find an efficient way to fit the observables in

order to characterize what's going on inside something we can't see. And that's the game in

quantum mechanics. We can't see the wave function ever. We know there are eigenstates.

We can observe energy levels and transition probabilities, and between those two things, we

can determine quantitatively all of the internal structure of objects that we can't see.

And this is what I do as a spectroscopist. And I'm really a little bit crazy about it because most

people instead of saying let's try to understand based on something simple, they will just solve

the Schrodinger equations numerically and get a bunch of small results and no intuition, no

cartoons, and no ability to do dynamics except another picture where you have to work things

out in a complicated way. But I'm giving you the standard problems from which you can solve

almost anything. And this should sound like fun, I hope.

OK, so have a great weekend.


