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Lecture #7: Classical Mechanical Harmonic Oscillator

Last time
What was surprising about Quantum Mechanics?
Free particle (almost an exact reprise of 1D Wave Equation)

Can't be normalized to 1 over all space! Instead: Normalization to one particle between x,
and x,. What do we mean by “square integrable?”

A ’CL ’ 2 _ ’b ’ 2 What free particle y(x) has this expectation value?
<p> = 5 5 What does this mean in a click-click experiment?
|al? + |b]

Motion not present, but 1 is encoded for it.
Node spacing: A/2 (generalize this to get "semiclassical’)

Semiclassical: A(x)= % s Detassical (X)) = [2m(E - V(x)):r/2
p(x

Particle in Infinite Box

2 1/2
h 2 . [ nm
= ——n Y (x)=|—| sin| —x
8ma a a
nodes, zero-point energy
change: a,V,, location of left edge
importance of pictures

3D box
H=h+h+h (commuting operators)

Enxnynz =E, + Eny +E,

Y, =W, OV, (DY, (2)
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Today (and next 3+ lectures) Harmonic Oscillator

1) Classical Mechanics (“normal modes” of vibration in polyatomic molecules arise from
classical mechanics). Preparation for Quantum Mechanical treatment.

2) Quantum mechanical brute force treatment — Hermite Polynomials

3) Elegant treatment with memorable selection rules: “creation/annihilation” operators.

4) Non-stationary states (i.e. moving) of Quantum Mechanical Harmonic Oscillator:
wavepackets, dephasing and recurrence, and tunneling through a barrier.

5) Perturbation Theory.

Harmonic Oscillator

We have several kinds of potential energy functions in atoms and molecules.

E o n?

n

particle in infinite-wall finite-length box
(also particle on a ring)

0 L
Level pattern tells us qualitatively what kind of system we have.
Level splittings tell us quantitatively what are the properties of the class of system we have.
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Rigid rotor ~——= E, <n(n+1)

Harmonic Oscillator

V(x)z%kxz E, o<(n+1/2)

o

The pattern of energy levels tells us which underlying microscopic structure we are dealing with.

Typical interatomic potential energy:

T

Bond-Breaking
Soft outer wall

looks like V(R) = (R — R.)?
harmonic near the bottom of the well

Hard
inner
wall

Re

We will use x rather than R here.
Expand any potential energy function as a power series:

X-X,=x

V(x)=V(0)+ av
X

2
X+ a’v
x=0 de

x4V
+

L2 a6

For small x, OK to ignore terms of higher order than x*. [What do we know about C;—V at the
X

minimum of any V(x)?]
For example, Morse Potential
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2.2
(1—2ax+4a2x +)

l—ax+ +...
2

\
Vix)= De [1 —e * ]2 = De [1 e ¥ 4+ e—Zax]

some algebra

7
= V(O)-I-*O +a’Dx*—a’Dx’ + Ga4Dex4 +...

why physically is there no linear in x term?

V(o) = D, (dissociation energy), V(0) =0.
If ax ® 1,V(x) = V(0)+(D,a*)x*. A very good starting point for the molecular vibrational

potential energy curve.
Call D,a* = k/2. Ignore the x’ and x* terms.

Let’s first focus on a simple harmonic oscillator in classical mechanics.

A

. i

I

XO -1 m
Hooke’s Law
F=-k(X-X,) When X > X,
oo — gt Force pushes mass back down toward X,
of potential
_dv When X < X,
X Force pulls mass back up toward X,

V(x):%k(X—Xo)z
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Newton’s equation:

2
F:ma:mii£7§ﬁ:—HX—X0
dt
x=X-X,
substitute and rearrange
d’x k 2" order ordinary linear differential equation: solution
a? = _Zx contains two linearly independent terms, each

multiplied by one of 2 constants to be determined

172 172
x(t)= Asin(ﬁj t+ Bcos(ﬁ) t

m m
It is customary to write

172
(ﬁ) =m. (w is conventionally used to specify an angular frequency:

m radians/second)
Why?

What is frequency of oscillation? T is period of oscillation.

x(t+1)=x(t)=A sin{(%)m t} + Bcos[(%)u2 t} = Asin{(%)yz (t+ ‘c)} + Bcos{(%j/z (t+ T):|

requires

k) o 2m 1 :
— | t=2n T=—=——=— as required.
m w 2nv v
1
V=—-
U

period

How long does one full oscillation take?

1/2
. . k
we have sin, cos functions of (— =t
m

when the argument of sin or cos goes from 0 to 27, we have one period of oscillation.

172
215:(5) T=WOT
m

2r 1
T=—=—.
W Vv
So everything makes sense.
o is “angular frequency” radians/sec.
v is ordinary frequency cycles/sec.

T is period sec
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x(t) = A sin wt + B cos wt

Need to get A,B from initial conditions:

V(x)
ASK!

[e.g. starting at a turning point where E =V (x,)=(1/2)kx]]

x_(E) x,(E)
0

Initial amplitude of oscillation depends on the strength of the pluck!

If we start at x, at = 0 (the sine term is zero at f = 0, the cosine term is B at = 0)
172 172
k k

Note that the frequency of oscillation does not depend on the initial amplitude. To get A for
initial condition x(0) = x,, look at # = t/4, where x(t/4) =0. Find A =0.

Alternatively, we can use frequency, phase form. For x(0) = x, initial condition:

x(t):Csin[(ﬁ) t+¢]
m

. _ ~ 2_E 1/2
1fx(0)—x+—( . j

1/2
C=(27E) H=-1/2

We are done. Now explore Quantum Mechanics - relevant stuff.

What is: Oscillation Frequency
Kinetic Energy T(¢), T
Potential Energy, V(7), Vv
Period t?
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. . o .
Oscillation Frequency: v= o independent of E
T

1
Kinetic Energy: T(t)= 5 mv(t)’

x(1) = [ZTETQ sin[ of + ¢] take derivative of x(7) with respect to ¢

v(t)= 0)[2715} cos[or + 0]

1 5| 2E 2
T(t)—zmg)H[ A }cos [0 +0]

kim
= Ecos® (ot +0)
Now some time averaged quantities:

“dr cos? (of +
=F JO ( (1)) recall T= 2n
T 0

(T)=T
=E/2

V()= %kxz _ E(z—E)sinz (oo +0) Calculate (V) by JO dt or by simple
= Esin’ (wt +¢)
E=T@t)+V(@t)=T+V
V=E/2

algebra, below

Really neatthat T=V=E/2.
Energy is being exchanged between T and V. They oscillate /2 out of phase: V(t)=T (t - %)
Vlags T.

What about x(t) and p(t) when x is near the turning point?

|:2E :[(/2
x(1)= | cosor

x(t=0)=x,
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x changing slowly near x turning point

A

p changing fastest near x turning point

Y

T/4 /2 t

Insights for wavepacket dynamics. We will see (in Lecture #11) that “survival probability”
[ )W (x,0)f

decays near t.p. mostly because of p rather than X .

What about time-averages of x, x>, p, p*?

0
0} is the HO potential moving in space?

¥ =V(x)/(k/2)
take r-average

<x2>=%<V(x)>=%§=E/k
p*=2mT
E

<p2>:2m5:mE
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172

Ax=(x=(x)) =(E/k)"

Ap:<p2—<p>2> —(mE)I/2
m 1/2
AxAp:E(?j =FE/®. small atlow E

We will see an uncertainty relationship between x and p in Quantum Mechanics.

Page 9

Probability of finding oscillator between x and x + dx: consider one half period, oscillator going

from left to right turning point.

distance
ti d B
P(x)dx= lme(x,x+ x) _ velocity
1/2 l(z_nj
2\ o
dx
2
:M: ® dx (v(x) small at x=x+)
2 v(x)2m .
20
P(x)
X, g

large probability at turning points. Goes to ® at x,.

minimum probability at x =0

In Quantum Mechanics, we will see that P(x,) does not blow up and also that there is some

probability outside the classically allowed region. Tunneling.
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Non-Lecture

Next we want to go from one mass on an anchored spring to two masses connected by a spring.

ml mz

N

Y

|
|

F = ma for each mass

=k(x,—x,—0,)

length of spring at rest,
i.e. whenx,—x = 4,

2 coupled differential equations.

Uncouple them easily, as follows:

Add the 2 equations

2 2 2
d’x, d’x, d
m——s+m,—== —z(mlx1 +m2x2) =0
dt dt dro "~ 7
we will see that
this is at worst
proportional to ¢

Define a center of mass coordinate.
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mGFmX _ x M=m,+m,
M
replace m x, + m,x, by MX
d’X
M—-=0
dt
integrate once with respect to ¢
dX

— ()= const.
dt()

The center of mass is moving at constant velocity — no force acting.

Next find a new differential equation expressed in terms of the relative coordinate

X=Xx,— X, —+,.

Divide the first differential equation (located at the top of page 10) by m,, the second by m,, and
subtract the first from the second:

d’x, d’x k k
dt22 —72‘:—"1—2(162 — X, —fo)—z(xz —x,—{,)
d’ 11
?(xz—xl):—k(m—2+;1j(xz—xl—ﬁo)
m, +m
=—k( 1;11m22)(x2 x,—{,)
m.m
— 1772
]/t =
m, + m,
d’ k k
—(x,—x)=——=(x,—x,— ;) =——x
killedby | t~ | | )7 )7
derivative x+/ | —— I
X 18 displacement
| 4\ from equilibrium

We get a familiar looking equation for the intramolecular displacement from equilibrium.

2

dx
—+kx=0
ﬂdtz

Everything is the same as the one-mass-on-an-anchored-spring problem except m — pu.
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Next time: Quantum Mechanical Harmonic Oscillator
A2
~ 1 .
H=L 4 i@
2u 2

note that this differential operator does not have time in it!

We will see particle-like motion for harmonic oscillator when we consider the Time Dependent
Schrodinger equation (Lecture #10) and W(x,¢) is constructed to be a particle-like state.

W(x,1) where ¥(x,0)= Y, y,

v=0
in the 4™ lecture on Harmonic Oscillators (Lecture #11).

revised 9/19/17 1:50 PM



MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry
Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/
https://ocw.mit.edu/terms



