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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
 

5.61 Physical Chemistry 
Fall, 2017 

 
Professor Robert W. Field 

 
FIFTY MINUTE EXAMINATION II ANSWERS 

 
Thursday, October 26 @ 7:30 PM in 4-370 

 
I. a† and a Matrices  (20 POINTS)   
 

A. (3 points)  v+1 a† v = v+1( )1/2 .  Sketch the structure of the a† matrix below: 
 

 

a† =

0
1

21/2

31/2

41/2

51/2

61/2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

 
B. (3 points) Now sketch the a matrix on a similar diagram. 
 

 

a =

0 1
21/2

31/2

0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
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C. (5 points) Now apply a† to the column vector that corresponds to |v = 3〉. 
 

  

v = 3 =

0
0
0
1
0
!
!
!

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

v = 0
1
2
3 a† v = 3 =

0
0
0
0
1
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

v = 0
1
2
3
4

 

 
D. (3 points) Is a† Hermitian? 

a† is not Hermitian because 

 

 

av+1,v
† = [v+1]1/2

av,v+1
† = 0

av,v+1
†( )* = 0*= 0

 

Thus  av+1,v
† = av,v+1

†( )*   
This is confusing because (a†)* = a and  
  (a

†)v+1,v = (a
†)v,v+1
* = (a)v,v+1 . 

Extra credit for mention of this paradox.  
 
E. (3 points) Is (a† + a) Hermitian? If it is, demonstrate it by the relationship 

between a matrix element that is the definition of a Hermitian 
operator. 

(a† + a) is Hermitian because (a† + a)* = (a + a†). 
 
(i) Also a† + a =  X!  and we know that  X!  is Hermitian because expectation values of 
X are real, never complex or imaginary. 
 
(ii) Also  

 
 

a† +a( )v+1,v = av+1,v
† +av+1,v = v+1( )1/2 +0

a† +a( )v,v+1 = av,v+1
† +av,v+1 = 0+ v+1( )1/2

   

 Since the matrix elements are real, the conjugate transpose of (a† + a) is (a + a†). 
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F. (3 points) Is i(a† – a) Hermitian? If it is, use a matrix element relationship 
similar to what you used for part E. 

  !p = i a† −a( )   

 !p  is Hermitian, thus i(a† – a) is Hermitian. 
Also  

 

i a† −a( )[ ]v+1,v = iav+1,v
† − iav+1,v

= i(v+1)1/2 − i0

i a† −a( )[ ]v,v+1
*

= −i0+ i(v+1)1/2
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II. The Road to Quantum Beats  (41 POINTS) 
 
Consider the 3-level H matrix 
 

  

H = !ω
10 1 0
1 0 2
0 2 −10

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

  

 
Label the eigen-energies and eigen-functions according to the dominant basis state 
character.  The  10!  state is the one dominated by the zero-order state with E(0) = 10,  !0  by 
E(0) = 0, and – 10!  by E(0) = –10.  

 
A. (6 points)  Use non-degenerate perturbation theory to derive the energies 

[HINT: H(0) is diagonal, H(1) is non-diagonal]: 
 

(i)  E10! =  10+ 12

10−0
=10.1    

(ii) 
 
E!0 = 0+

12

0−10
+

22

0− (−10)
= 0− 1

10
+
4
10

=
3
10    

(iii) 
 
E
−10! = −10+ 42

−10−0
= −10−1.6 = −11.6    

 
B. (6 points) Use non-degenerate perturbation theory to derive the eigenfunctions 

[HINT: do not normalize] 
 

(i) 
 
ψ10! =ψ10 +

1
10−0

ψ0 =ψ10 +
1
10
ψ0    

(ii) 
 
ψ !0 =ψ0 +

1
0−10

ψ10 +
2

0− (−10)
ψ−10 =ψ0 −

1
10
ψ10 +

2
10
ψ−10    

(iii) 
 
ψ
−10! =ψ−10 +

2
−10−0

ψ0 =ψ−10 −
2
10
ψ0    
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C. (5 points) Demonstrate the approximate relationship: 
  

ψ
−10!∫ Hψ

−10!dx ≈ E−10!
[HINT: do not normalize].  

  

∫ ψ
−10!
* Hψ

−10!dx = ∫ ψ−10 −0.2ψ0( )*H ψ−10 −0.2ψ0( )dx
=H−10,−10 +0.04H0,0 −0.2H−10,0 −0.2H0,−10

= −10+0− (0.4)2 = −10.8
   

 
∫ ψ

−10!ψ−10!dx = ∫ ψ−10!ψ−10!dx+
2
10
⎛
⎝
⎜

⎞
⎠
⎟
2

∫ ψ0ψ0dx =1+0.04 =1.04    

Normalized:  −10.8
1.04

= −10.38   which is closest to  E−10! = −11.6  . 

 
D. (8 points) Use the results from part B to write the elements of the T† matrix 

that non-degenerate perturbation theory promises will give a nearly 
diagonal 
    !H =T†HT   
matrix [do not normalize]. 

We know that 

  

T†HT = H! =

E10! 0 0
0 E10! 0
0 0 E

−10!

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

 and that the columns of T† are the eigenvectors 

 

  

ψ10! ψ0" ψ
−10!

T† =

1 −
1
10

0

0.1 1 −0.2

0 2
10

1

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

ψ10
ψ0

ψ−10

  

 
E. (6 points) Suppose, at t = 0, you prepare a state Ψ(x, 0) = ψ0

(0)(x) .  Use the 
correct elements of the T† matrix to write Ψ(x, 0) as a linear 
combination of the eigenstates,  ψ10! ,ψ "0,  and ψ

−10! [do not normalize]: 

We want one of the rows of T†.  We want the ψ0 row   Ψ(x,0)= (0.1)ψ10! + (1.0)ψ0" −0.2ψ10!   
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F. (4 points) For the  Ψ(x,0)= c10!ψ10! + c"0ψ "0 + c−10!ψ−10!  initial state you derived in 
part E, write Ψ(x, t) (do not normalize).  If you do not believe your 
derived  c10! ,  c!0 , and  c−10!  constants, leave them as symbols. 

 

Ψ(x,t)= 0.1e−iE10!t "ψ10! +1.0e
−iE0#t "ψ0# −0.2e

−iE−10!t "ψ
−10!

= 0.1e−i(10.1)t "ψ10! +1.0e
−i(0.3)t "ψ0# −0.2e

−i(−11.6)t "ψ10!
   

 
G. (6 points) If you obtained an answer you believe in part G, you will have 

discovered quantum beats. Even if you are not convinced that your 
answer to part G is correct, you will receive partial credit for being 
as explicit as you can be about P0(t): 

 
(i) What is the value of P0(0)?  

 P0(0) = 0.  You prepared ψ(x,0) = ψ0 so P0(t = 0) = 1. 
 
(ii) The contribution of the zero-order ψ0

(0)  state to the 
observed fluorescence will be modulated at some easily 
predicted frequencies.  What are these frequencies? 

The frequencies will be  

 

E10! −E0"( )
#

,
E10! −E−10!( )
#

, and
E0" −E−10!( )
#

10.1−0.3
#

10.1− (−11.6)
#

0.3− (−11.6)
#

9.8
#

21.7
#

11.9
#

   

These are “quantum beats”.  You could also compute the amplitudes of each frequency, 
but that would be a tedious calculation. 
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III.  Inter-Mode Anharmonicity in a Triatomic (10 POINTS) 

 Molecule 
 
Consider a nonlinear triatomic molecule.  There are three vibrational normal modes, as 
specific in H(0) and two anharmonic inter-mode interaction terms, as specified in H(1). 
 

  

H(0)

hc
= !ω1 N1 +1/ 2( )+ !ω2 N2 +1/ 2( )+ !ω3 N3 +1/ 2( )

H(1) = k122Q1Q2
2 + k2233Q2

2Q3
2

 

 
A. (2 points) List all of the (∆v1, ∆v2, ∆v3) combined selection rules for nonzero 

matrix elements of the k122 term in H(1)?  One of these selection rules 
is (+1, +2, 0). 

The k122 term gives ∆v1 = ±1, ∆v2 = 0,±2 and ∆v3 = 0.  So we have 
∆ v1,∆ v2,∆ v3( ) = (1,2,0)

(1,0,0)
(1,−2,0)
(−1,2,0)
(−1,0,0)
(−1,−2,0)

   

 
B. (2 points) List all of the (∆v1, ∆v2, ∆v3) selection rules for nonzero matrix 

elements of the k2233 term in H(1)? 
The k2233 term gives ∆v1 = 0, ∆v2 = ±2,0 and ∆v3 = 0,±2.  So now we have 
∆ v1,∆ v2,∆ v3( ) = (0,2,2)

(0,2,0)
(0,2,−2)
(0,0,2)
(0,0,0)
(0,0,−2)
(0,−2,2)
(0,−2,0)
0,−2,−2)
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C. (2 points) In the table below, in the last column, place an X next to the inter-
mode vibrational anharmonicity term to which the k2233 term 
contributes . 
 
(i)  ωexe12

! v1 +1/ 2( ) v2 +1/ 2( )   

(ii)  ωexe23
! v2 +1/ 2( ) v3 +1/ 2( )  X 

(iii) 
 ωeze2233
! v2 +1/ 2( )2 v3 +1/ 2( )2   

We get ωexe23 v2 +1/ 2( ) v3 +1/ 2( )  from  Hv1,v2 ,v3;v1,v2 ,v3
(1) = Ev1,v2 ,v3

(1) .  We also get contributions 
to this term from Ev1,v2 ,v3

(2) . 
 
D. (2 points) Does the term you specified in part C depend on the sign of k2233? 

The contributions from the Ev1,v2 ,v3
(1)  term does depend on the sign of k2233 because there is a 

(∆v1, ∆v2, ∆v3) = (0, 0, 0) diagonal matrix element of  k2233Q2
2Q3

2 . 
 
E. (2 points) Does the k122 term in H(1) give rise to any vibrational anharmonicity 

terms that are sensitive to the sign of k122?  Justify your answer.  
The k122 term cannot give any vibrational anharmonicity terms that depend on the sign of 
k122 becaue of the ∆v1 = ±1 selection rule. 
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IV. Your First Encounter with a (19 POINTS + 2 extra credit) 

 Non-Rigid Rotor 
 

Your goal in this problem is to compute the v-dependence of the rotational constant of a 
harmonic oscillator. 
 
Some equations that you will need: 
 

 
B(R)= !2

4πcµ
R−2 , Be =

!2

4πcµ
Re
−2    

 

  
Q̂ ≡ R− Re =

!
4πcµωe

⎡

⎣
⎢

⎤

⎦
⎥

1/2

â+ â†( )    

 

 

1
R2

=
1

Q+ Re( )2
=
1
Re
2

Q
Re
+1

⎛

⎝
⎜

⎞

⎠
⎟

−2

  

 
Power series expansion: 
 

 
 

1
R2

=
1
Re
2 1−2

Q
Re

⎛

⎝
⎜

⎞

⎠
⎟+ 3

Q
Re

⎛

⎝
⎜

⎞

⎠
⎟

2

− 4 Q
Re

⎛

⎝
⎜

⎞

⎠
⎟

3

+…
⎡

⎣
⎢

⎤

⎦
⎥ , 

thus 

 
 
B(R)= Be 1−2

Q
Re

⎛

⎝
⎜

⎞

⎠
⎟+ 3

Q
Re

⎛

⎝
⎜

⎞

⎠
⎟

2

−…
⎡

⎣
⎢

⎤

⎦
⎥ . 

Some algebra yields 
 

 
 

Q
Re
=

Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟

1/2

â+ â†( )  (1) 

 

where Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟ ≈ 10

−3 , an excellent order-sorting parameter. 

 

ĤROT = hcBeJ(J +1) 1−2
Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟

1/2

â+ â†( )+ 3 Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟ â+ â†( )2 −…

⎡

⎣
⎢

⎤

⎦
⎥  (2) 
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A. (3 points) From boxed equation (2), what is  Ĥ(0) ? 

H(0) = hcBe J(J + 1). 
 
B. (3 points) What is  Ĥ(1) ? 

 
H(1) = hcBeJ(J +1) −2

Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟

1/2

a+a†( )+ 3 Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟ a+a†( )2 +…

⎡

⎣
⎢

⎤

⎦
⎥   

 
C. (6 points) EJ = EJ

(0) +EJ
(1) +EJ

(2) . 
 
What is EJ

(0) , as a function of hc, Be, and J(J + 1)? 
EJ
(0) = hcBeJ(J +1)    
 
  What is EJ

(1) , as  a function of hc, Be, ωe, and J(J + 1)? 

 

EJ ,v
(1) = hcBeJ(J +1)3

Be
ωe

⎛

⎝
⎜

⎞

⎠
⎟ 2N+1( )

2N+1= 2 v+1/ 2( )

   

 
D. (5 points) From experiment we measure 

 
EJ = EJ

(0) +EJ
(1)

Bv = Be −αe v+1/ 2( ), Bv+1 − Bv = −αe.
  

 
What is αe expressed in terms of hc, Be, and ωe? 

EJ ,v
(1) = hcJ J +1( ) v+1/ 2( )6Be

2 ωe

αe = −6hcBe
2 ωe

 

 
E. (2 points extra credit) Does the sign of αe bother you? Why? 

One might expect that as v increases, Bv will decrease.  This is correct for an anharmonic 
non-rigid rotor. However, for a harmonic non-rigid rotor, Bv will increase with v.  This 
occurs because B(R) increases more at the inner turning point than it decreases at the 
outer turning point.  
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V. Derivation of One Part of the Angular  (10 POINTS) 
 Momentum Commutation Rule 
 

  

!
L =
!rx!p =

î ĵ k̂
x y z
px py pz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= î ypz − zpy( )− ĵ xpz − zpx( )+ k̂ xpy − ypx( )  (1) 

  x,px[ ] = i!   (2) 
 

  
Lx ,Ly⎡⎣ ⎤⎦=+i!Lz   (3) 

 
Use equations (1) and (2) to derive equation (3). 
From Eq. (1) we have  
 

 
Lx = ypz − zpy
Ly = zpx − xpz

   

Lx ,Ly⎡⎣ ⎤⎦= ypz − zpy , zpx − xpz⎡⎣ ⎤⎦

= ypz , zpx[ ]− ypz , xpz[ ]− zpy , zpx⎡⎣ ⎤⎦+ zpy , xpz⎡⎣ ⎤⎦

= y pz , z[ ] px −0−0+ x z, pz[ ] py

   

[x, px] = i! 

 

Lx ,Ly⎡⎣ ⎤⎦= ypx −i!( )+ xpy i!( )

= i! xpy − ypx⎡⎣ ⎤⎦
   

but we know from Eq. (1) that Lz = xpy – ypx, thus [Lx, Ly] = i!Lz as required.  
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Some Possibly Useful Constants and Formulas 
 
h = 6.63 × 10–34 J · s ! = 1.054 × 10–34 J · s
 ε0

12 2 1 38854 10= × − − −. Cs kg m  
c = 3.00 × 108 m/s c = λν λ = h/p 
me = 9.11 × 10–31 kg mH = 1.67 × 10–27 kg  
1 eV = 1.602 x 10-19 J e = 1.602 x 10-19 C 
E = hν a0 = 5.29 x 10-11 m   e± iθ = cosθ ± isinθ  

  
ν =

1
λ
= RH

1
n1

2
−

1
n2

2

$

%
&
&

'

(
)
)   where 

  
RH =

me4

8ε0
2h3c

=109,678 cm-1  

 
 
Free particle:  

   
E =
2k2

2m
 

  
ψ x( ) = Acos kx( )+ Bsin kx( )  

 
 
Particle in a box:  

  
En =

h2

8ma2 n2 = E1 n2  
  
ψ 0 ≤ x ≤ a( ) = 2

a

#

$
%
&

'
(

1 2

sin nπ x
a

#

$
%

&

'
(  n = 1, 2, … 

 
 
Harmonic oscillator:  

   
En = n+ 1

2
!

"
#

$

%
&ω  [units of ω are radians/s] 

  
ψ0 x( ) = α

π

$

%
&

'

(
)

1 4

e−αx2 2 ,      ψ1 x( ) = 1
2
α
π

$

%
&

'

(
)

1 4

2α1 2x( )e−αx2 2      ψ2 x( ) = 1
8
α
π

$

%
&

'

(
)

1 4

4αx2 −2( )e−αx2 2

 

 
!̂x ≡ mω

"
x̂

  
!̂p ≡ 1

"mω
p̂  [units of ω are radians/s]

 

 
a ≡ 1

2
!̂x+ i !̂p( )  

  
Ĥ
!ω

= aa† − 1
2
= a†a+ 1

2  
 N̂ = a†a

 
 

 
a† = 1

2
!̂x − i !̂p( )   

 2πc !ω =ω [units of !ω are cm–1]   
 
Semi-Classical 
 
λ = h/p 
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pclassical(x) = [2m(E – V(x))]1/2 
 
period: τ = 1/ν = 2π/ω 
 
For a thin barrier of width ε where ε is very small, located at x0, and height V(x0): 
 
 Hnn

(1) = ψ n
(0)*

x0−ε/2

x0+ε/2∫ V (x)ψ n
(0)dx = εV (x0 ) ψ n

(0)(x0 )
2

  

 
Perturbation Theory 
 
En = En

(0) + En
(1) + En

(2)  
 
ψ n = ψ n

(0) +ψ n
(1)  

 

 
En
(1) = ψ n

(0)*∫ H!
(1)
ψ n
(0)dx = Hnn

(1)  
 

ψ n
(1) =

m≠n
∑ Hnm

(1)

En
(0) − Em

(0) ψm
(0)  

 

En
(2) =

m≠n
∑ Hnm

(1) 2

En
(0) − Em

(0)  
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