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Lecture 24 Supplement: General Eigenvalue Problem

for LCAO-MO Expressed in Matrix Notation‡

In order to solve for the RAB–dependent LCAO-MO electronic energy and electronic wave-

functions we must solve a “Generalized Eigenvalue Equation” (see page 8 of Lecture Notes

#24). For a 2-AO LCAO-MO problem, we must solve(
ε V12

V12 ε

)(
c1
c2

)
= Eavg

(
1 S12

S12 1

)(
c1
c2

)
.

This corresponds to two linear homogeneous equations in two unknowns, c1 and c2. (Note

that, for this 2 AO variational function, the Hamiltonian matrix is

H =

(
ε V12

V12 ε

)
and the overlap matrix is

S =

(
1 S12

S12 1

)
.)

This type of equation is more widely applicable. You can use N � 2 AO’s in the variational

determination of the lowest Eavg. The condition for a non–trivial (“trivial” means all ci = 0)

solution is that the numerical value of the determinant of the coefficients of the {ci} must

be zero. In other words, the determinant of H−EavgS is zero. This condition is satisfied by

varying Eavg. For an N–state variational basis set, there are N values of Eavg that satisfy

this det(H − EavgS) = 0 condition, because H and S are N × N matrices when we are

working with N AOs in the basis set. We actually want to know all N of these values of

Eavg (not merely the smallest one) and the set of {ci} that is generated for each value of

Eavg. Each value of Eavg corresponds to the variational best energy of a particular MO (and

the corresponding set of {ci} represents this MO in the AO basis set), thus we see that we

recover N MOs from N AOs, a result that you might remember from 5.111/2.

‡The acronyms employed here are widely used: AO = Atomic Orbitals, LCAO = Linear Combination of
Atomic Orbitals, MO = Molecular Orbitals.
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The Generalized Eigenvalue Equation may be expressed in matrix form

Hc = ESc.

You know how to construct both H and S from AO’s centered at RA and RB. You need

the atomic orbital energies along the diagonal of H and the values of the atom–A, atom–B

1–electron interaction energies in the off–diagonal position:

Diagonal Hn`A,n`A = εn`(R) = ε
(0)
n` + ε′n`(R)

Off-Diagonal Hn`A,n`B = Vn`A,n`B.

Non-Lecture

Hn`A,n`A = ε
(0)
n` + ε′n`(R)

ε′n` ≡
∫

n`A(r)
1

|RB − r̂|
n`A(r)dr

where ε
(0)
n` is the eigen-energy of an electron in the n` orbital centered on nucleus A. This

orbital is an eigenfunction of the hydrogen atom one–electron Hamiltonian

hA =
−∇2

r

2
− 1

|RA − r̂|
.

ε′n`(R) is the energy associated with an electron in the n` orbital centered on nucleus A

interacting with nucleus B at a distance R from nucleus A. Also included in ε′n`(R) is the

energy of repulsion between nuclei A and B. Note that ε′n` → 0 as R→∞ and ε′n` →∞ as

R→ 0.

Rigorously, you should include interaction terms off–diagonal in n`, but these are often

neglected (especially for homonuclear diatomic molecules) as a convenient approximation.

However, same-atom off-diagonal terms like Hn`A,n′`′A are rigorously zero because the n`A

and n`B AO’s are eigenfunctions of their respective 1-e− Hamiltonian. You also know how

to construct the S matrix

Sn`A,n`A = 1 (independent of R)

Sn`A,n′`′A = 0 (independent of R)

Sn`A,n`B 6= 0 (R–dependent)
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Note that the atom A and atom B basis functions are respectively two sets of orthonormal

AO’s. So how do we solve

(H− ES)c = 0

when S is not the identity matrix?

S is a real, symmetric matrix. There must exist a unitary transformation that diagonal-

izes S

USU† =


S1 0 0 0
0 S2 0 0

0 0
. . . 0

0 0 0 SN

 = S̃

where the Si along the diagonal of S̃ are the eigenvalues of S. This diagonal matrix, S̃, can be

converted into the identiy matrix (all 1’s along the diagonal) by the following transformation:

(S̃)−1/2USU†(S̃)−1/2 = 1.

This transforms all of the basis functions into an orthonormal set of functions.

You might find it strange to think about a mathematical function of a matrix. For S̃,

which is a diagonal matrix, it is trivial to compute S̃1/2 by taking the square root of the only

non–zero elements of S̃, which all lie along the diagonal of S̃. For a non–diagonal symmetric

or Hermitian matrix, A, it is possible to compute any f(A) as follows:

1. Diagonalize A: TAT† = Ã.

2. Compute f(Ã) as

f(Ã) =


f(A1) 0 0 0

0 f(A2) 0 0

0 0
. . . 0

0 0 0 f(AN)

 .

3. Transform f(Ã) back to the original basis set

T†f(TAT†)T = T†f(Ã)T.
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By definition, for a unitary matrix

U† = U−1

so

U†U = 1.

Also

S̃−1/2S̃1/2 = 1.

Thus

U†S̃−1/2S̃1/2U = 1.

We now insert this very useful combination of matrices between the matrix (H − ES) and

the vector c and then multiply on the left by S̃−1/2U

S̃−1/2U(H− ES)U†S̃−1/2S̃1/2Uc = 0.

Now define H̃ as

H̃ = S̃−1/2UHU†S̃−1/2

and define c̃ as

c̃ = S̃1/2Uc.

Now put it all together and call
∣∣∣H̃− E1

∣∣∣ the “secular determinant”

(H̃− E1)c̃ = 0.

Now we must solve for the zeroes of the secular determinant. This is the usual form of the

secular equation. This procedure is equivalent to diagonalizing H̃ to find the eigenvalues of

H̃. H̃ is merely the original LCAO-MO Hamiltonian transformed into an orthonormal basis

set. Let T be a unitary matrix that diagonalizes H̃

TH̃T† =
˜̃
H =


E1 0 0 0
0 E2 0 0

0 0
. . . 0

0 0 0 EN

 .

Now insert T†T = 1 between (H̃ − E1) and c and multiply on the left by T and we have

the desired final result

T(H̃− E1)T†Tc =

(
˜̃
H− E1)˜̃c = 0
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where

˜̃c = Tc̃ = TS̃1/2Uc

˜̃ci =
∑
j

∑
k

∑
`

TijS̃
1/2

jj Ujkck

ck =


0
...
1
...
j

� k–th position

Let

R = TS̃1/2U

˜̃ci =
∑
j

Rijcj

which means that the i-th eigenvector, expressed in the original LCAO-MO basis set, is the

i-th row of R. ˜̃ci is the eigenvector that corresponds to the i-th eigenvalue of
˜̃
H.
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