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Lecture 24 Supplement: General Eigenvalue Problem
for LCAO-MO Expressed in Matrix Notation?

In order to solve for the Rjp—dependent LCAO-MO electronic energy and electronic wave-

functions we must solve a “Generalized Eigenvalue Equation” (see page 8 of Lecture Notes

#24). For a 2-A0 LCAO-MO problem, we must solve

e Vi) [a _x 1 S\ (a
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This corresponds to two linear homogeneous equations in two unknowns, ¢; and ¢y. (Note

that, for this 2 AO variational function, the Hamiltonian matrix is
e Vi
H =
<V12 € )

. 1 812
S— (512 1).>

This type of equation is more widely applicable. You can use N > 2 AQ’s in the variational

and the overlap matrix is

determination of the lowest E,y,. The condition for a non-trivial (“trivial” means all ¢; = 0)
solution is that the numerical value of the determinant of the coefficients of the {c¢;} must
be zero. In other words, the determinant of H — E,,S is zero. This condition is satisfied by
varying E,,,. For an N-state variational basis set, there are NV values of E,,, that satisfy
this det(H — E,,,S) = 0 condition, because H and S are N x N matrices when we are
working with N AOs in the basis set. We actually want to know all N of these values of
Eave (not merely the smallest one) and the set of {¢;} that is generated for each value of
E,ye. Each value of E,,, corresponds to the variational best energy of a particular MO (and
the corresponding set of {¢;} represents this MO in the AO basis set), thus we see that we
recover N MOs from N AOs, a result that you might remember from 5.111/2.

!The acronyms employed here are widely used: AO = Atomic Orbitals, LCAO = Linear Combination of
Atomic Orbitals, MO = Molecular Orbitals.
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The Generalized Eigenvalue Equation may be expressed in matrix form
Hc = ESc.

You know how to construct both H and S from AQO’s centered at R4 and Rp. You need
the atomic orbital energies along the diagonal of H and the values of the atom—A, atom—-B

1—electron interaction energies in the off-diagonal position:

Diagonal Hypanen = ene(R) = 55?@) + ene(R)
Off-Diagonal Hyoanes = Vieane-
Non-Lecture

HnéA,an = 5206) + 6;5(3)

, 1
Ee = /nﬁA(’r’)mn@;(T)dr

where 5,(102 is the eigen-energy of an electron in the nf orbital centered on nucleus A. This
orbital is an eigenfunction of the hydrogen atom one—electron Hamiltonian
—~V? 1
h, = L— —.
2 ‘R A — I'|

e/ (R) is the energy associated with an electron in the nf orbital centered on nucleus A
interacting with nucleus B at a distance R from nucleus A. Also included in €/ ,(R) is the

energy of repulsion between nuclei A and B. Note that ¢/, = 0 as R — oo and €], — 00 as
R — 0.

Rigorously, you should include interaction terms off-diagonal in n¢, but these are often
neglected (especially for homonuclear diatomic molecules) as a convenient approximation.
However, same-atom off-diagonal terms like H,, ¢, are rigorously zero because the nfy
and nfp AO’s are eigenfunctions of their respective 1-e~ Hamiltonian. You also know how

to construct the S matrix

Sneanea =1 (independent of R)
Sneanea =0 (independent of R)
Sneanes 7 0 (R-dependent)
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Note that the atom A and atom B basis functions are respectively two sets of orthonormal

AQO’s. So how do we solve
(H—ES)c=0

when S is not the identity matrix?

S is a real, symmetric matrix. There must exist a unitary transformation that diagonal-

izes S
S, 0 0 0
0 S, 0 0 -
USU' = =S
0 0 .0
0 0 0 Sy

where the S; along the diagonal of S are the eigenvalues of S. This diagonal matrix, g, can be

converted into the identiy matrix (all 1’s along the diagonal) by the following transformation:
(S)"V2usut(S)" V2 = 1.

This transforms all of the basis functions into an orthonormal set of functions.

You might find it strange to think about a mathematical function of a matrix. For g,
which is a diagonal matrix, it is trivial to compute S1/2 by taking the square root of the only
non-zero elements of g, which all lie along the diagonal of S. For a non—diagonal symmetric

or Hermitian matrix, A, it is possible to compute any f(A) as follows:

1. Diagonalize A: TATT = A.

2. Compute f(A) as

f(A) 0 0 0
- 0 A5) 0 0
F(A) O f(o) o
0 0 0 f(An)

3. Transform f(A) back to the original basis set

T'f(TATHT = Tf(A)T.
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By definition, for a unitary matrix

Uf=u"
SO
U'u=1.
Also
S22 — 1,
Thus

Ufs—1/2812y = 1.

We now insert this very useful combination of matrices between the matrix (H — ES) and
the vector ¢ and then multiply on the left by S-1/2y

S?U(H — ES)UTS~'/282Uc = 0.
Now define H as
H = S '/?UHU'S /2

and define € as
¢ =S"2Uec.

Now put it all together and call ‘ICI — Eﬂ‘ the “secular determinant’
(H— E1)é =0.

Now we must solve for the zeroes of the secular determinant. This is the usual form of the
secular equation. This procedure is equivalent to diagonalizing H to find the eigenvalues of

H. H is merely the original LCAO-MO Hamiltonian transformed into an orthonormal basis

set. Let T be a unitary matrix that diagonalizes H

E,L 0 0 0
. ~ E, 0 0

THT! =H = _
0 0 . 0

Now insert TIT = 1 between (ﬁ — E1) and ¢ and multiply on the left by T and we have
the desired final result

T(H - E1)T ' Tc =
(H—E1)é=0
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where
¢ = Té = TSY?Uc
=) > TySj; Uncr
i k¢
0
=11 k—th position
J
Let
R = TS'/?2U

61‘: E Rijcj
J

which means that the i-th eigenvector, expressed in the original LCAO-MO basis set, is the

i-th row of R. & is the eigenvector that corresponds to the i-th eigenvalue of H.
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