5.61 Fall 2017

Problem Set \#3

1. A. McQuarrie, page $120, \# 3-3$ Show $\hat{A} f(x)=\lambda f(x)$, for λ constant. Find the eigenvalue λ.
B. McQuarrie, page 120, \#3-4
C. McQuarrie, page 182, \#4-11

2. McQuarrie, pages $121-122, \# 3-11$. Continuity of ψ^{\prime}

3. A. McQuarrie, page $123, \# 3-17$
B. McQuarrie, page 127, \#3-36

4. Particle in an infinite 1-D Well

A. McQuarrie, page 122, \#3-12. Answer this problem qualitatively by drawing a cartoon for $n=2$ and $n=3$ states.
B. Is there a simple mathematical/physical reason why the probabilities are not $1 / 4$ for all four regions: $0 \leq x \leq a / 4, a / 4 \leq x \leq a / 2, a / 2 \leq x \leq 3 a / 4$, and $3 a / 4 \leq x \leq a$?
[HINT: where are the nodes in $\psi_{n}(x)$?]

5. Particle on a Ring

Solve for the energy levels of the particle confined to a ring as a crude model for the electronic structure of benzene. The two dimensional Schrödinger Equation, in polar coordinates, is

$$
-\frac{\hbar^{2}}{2 \mu}\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}}+U(r, \phi)\right] \psi=E \psi
$$

For this problem, $U(r, \phi)=\infty$ for $r \neq a$, but when $r=a, U(a, \phi)=0$.
A. This implies that $\psi(r, \phi)=0$ for $r \neq a$. Why?
B. If $\psi(r, \phi)=0$ for $r \neq a$, then $\frac{\partial \psi}{\partial r}=0$. What is the simplified form of the Schrödinger Equation that applies when the particle is confined to the ring?
C. Apply the "periodic" boundary condition that $\psi(a, \phi)=\psi(a, \phi+2 \pi)$ to obtain the E_{n} energy levels.

6. 1-Dimensional Infinite Wells with Steps

Consider the potential

$$
\begin{array}{ll}
V(x)=\infty & x<0, x>a \\
V(x)=0 & 0 \leq x \leq a / 2 \\
V(x)=V_{0}=\frac{h^{2}}{8 m a^{2}}(2)^{2} & a / 2<x \leq a
\end{array}
$$

(This is the energy of $n=1$ of an infinite well of width $a / 2$.)
A.

Sketch $V(x)$ vs. x.
B. What are the boundary conditions for $\psi(x)$ at $x=0$ and $x=a$?
C. What requirements must be satisfied at $x=a / 2$?
D. Solve for the $n=2$ (one node) and $n=3$ (two nodes) $\psi_{n}(x)$ eigenfunctions of \widehat{H} and E_{n} energy levels.

Hints:
(i) For $0 \leq x \leq a / 2, \psi_{\mathrm{I}}(x)=A \sin k_{\mathrm{I}} x \quad k_{\mathrm{I}}=\left[2 m E / \hbar^{2}\right]^{1 / 2}$
(ii) For $a / 2<x \leq a, \psi_{\mathrm{II}}=B \sin k_{\mathrm{II}}(a-x) k_{\mathrm{II}}=\left[2 m\left(E-V_{0}\right) / \hbar^{2}\right]^{1 / 2}$
(iii) $\psi_{\mathrm{I}}(a / 2)=A \sin \left(k_{\mathrm{I}} a / 2\right)$
$\psi_{\text {II }}(a / 2)=B \sin \left(k_{\text {II }} a / 2\right)$
${\frac{d \psi_{\mathrm{I}}}{d x}}_{x=a / 2}=A k_{\mathrm{I}} \cos \left(k_{\mathrm{I}} a / 2\right)$
$\frac{d \psi_{\mathrm{II}}}{d x}{ }_{x=a / 2}=+B k_{\mathrm{II}} \cos \left(k_{\mathrm{II}} a / 2\right)$
E. Compare your values of E_{2} and E_{3} to what you obtain from the de Broglie quantization condition

$$
\begin{aligned}
& (n / 2)=\frac{a / 2}{\lambda_{n, \mathrm{I}}}+\frac{a / 2}{\lambda_{n, \mathrm{II}}} \\
& \lambda=h / p=2 \pi / k=h[2 m(E-V(x))]^{-1 / 2}
\end{aligned}
$$

F. For the $n=2$ and $n=3$ energy levels, what are the probabilities, P_{2} and P_{3}, of finding the particle in the $0 \leq x \leq a / 2$ region?
G. (optional) Will the $n=2$ and $n=3$ energy levels of the $V_{1}(x)$ and $V_{2}(x)$ potentials (defined below) be identical, as suggested by part E? Why?

$$
\begin{array}{lll}
V_{1}(x): & V_{1}(x)=\infty & x<0, x>a \\
& V_{1}(x)=0 & 0 \leq x \leq a / 2 \\
& V_{1}(x)=V_{0} & a / 2<x \leq a
\end{array} \quad \square \quad \text { barrier on right side }
$$

versus

$$
\begin{array}{lll}
V_{2}(x): & V_{2}(x)=\infty & x<0, x>a \\
& V_{2}(x)=0 & 0 \leq x \leq a / 4,3 a / 4 \leq x \leq a \\
& V_{2}(x)=V_{0} & a / 4<x \leq 3 a / 4
\end{array} \quad \text { barrier in the center }
$$

H. Solve for $n=1 \psi_{1}(x)$ and E_{1} for V_{1}.

HINTS: For $a / 2<x \leq a$,

$$
\begin{aligned}
\psi_{\mathrm{II}}(x) & =B e^{\kappa_{\mathrm{II}}(a-x)}+C e^{-\kappa_{\mathrm{II}}(a-x)} \\
\kappa_{\mathrm{II}} & =\left[2 m\left(V_{0}-E\right) / \hbar^{2}\right]^{1 / 2}
\end{aligned}
$$

I. (optional) Is E_{1} for V_{1} larger or smaller than E_{1} for V_{2} ? Why? A cartoon would be helpful.

MIT OpenCourseWare
https://ocw.mit.edu/

5.61 Physical Chemistry

Fall 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

