5.61 Fall 2017 Problem Set #3

1. A. McQuarrie, page 120, #3-3 Show $\hat{A}f(x) = \lambda f(x)$, for λ constant. Find the eigenvalue λ .

B. McQuarrie, page 120, #3-4

C. McQuarrie, page 182, #4-11

2. McQuarrie, pages 121-122, #3-11. Continuity of ψ'

3. A. McQuarrie, page 123, #3-17

B. McQuarrie, page 127, #3-36

4. Particle in an infinite 1-D Well

A. McQuarrie, page 122, #3-12. Answer this problem qualitatively by drawing a cartoon for n = 2 and n = 3 states.

B. Is there a simple mathematical/physical reason why the probabilities are not 1/4 for all four regions: $0 \le x \le a/4$, $a/4 \le x \le a/2$, $a/2 \le x \le 3a/4$, and $3a/4 \le x \le a$?

[HINT: where are the nodes in $\psi_n(x)$?]

5. Particle on a Ring

Solve for the energy levels of the particle confined to a ring as a crude model for the electronic structure of benzene. The two dimensional Schrödinger Equation, in polar coordinates, is

$$-\frac{\hbar^2}{2\mu} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \phi^2} + U(r,\phi) \right] \psi = E \psi.$$

For this problem, $U(r, \phi) = \infty$ for $r \neq a$, but when r = a, $U(a, \phi) = 0$.

A. This implies that $\psi(r, \phi) = 0$ for $r \neq a$. Why?

B. If $\psi(r, \phi) = 0$ for $r \neq a$, then $\frac{\partial \psi}{\partial r} = 0$. What is the simplified form of the Schrödinger Equation that applies when the particle is confined to the ring?

C. Apply the "periodic" boundary condition that $\psi(a, \phi) = \psi(a, \phi + 2\pi)$ to obtain the E_n energy levels.

6. 1-Dimensional Infinite Wells with Steps

Consider the potential

$$V(x) = \infty \qquad x < 0, x > a$$

$$V(x) = 0 \qquad 0 \le x \le a/2$$

$$V(x) = V_0 = \frac{h^2}{8ma^2} (2)^2 \qquad a/2 < x \le a$$

(This is the energy of n = 1 of an infinite well of width a/2.)

А.

Sketch V(x) vs. x.

B. What are the boundary conditions for $\psi(x)$ at x = 0 and x = a?

C. What requirements must be satisfied at x = a/2?

D. Solve for the n = 2 (one node) and n = 3 (two nodes) $\psi_n(x)$ eigenfunctions of \hat{H} and E_n energy levels.

Hints:

- (i) For $0 \le x \le a/2$, $\psi_{\rm I}(x) = A \sin k_{\rm I} x$ $k_{\rm I} = [2mE/\hbar^2]^{1/2}$
- (ii) For $a/2 < x \le a$, $\psi_{\text{II}} = B \sin k_{\text{II}} (a x) k_{\text{II}} = [2m(E V_0)/\hbar^2]^{1/2}$

(iii)
$$\psi_{\mathrm{I}}(a/2) = A \sin(k_{\mathrm{I}} a/2)$$

 $\psi_{\mathrm{II}}(a/2) = B \sin(k_{\mathrm{II}} a/2)$
 $\frac{d\psi_{\mathrm{I}}}{dx}_{x=a/2} = Ak_{\mathrm{I}} \cos(k_{\mathrm{I}} a/2)$
 $\frac{d\psi_{\mathrm{II}}}{dx}_{x=a/2} = +Bk_{\mathrm{II}} \cos(k_{\mathrm{II}} a/2)$

E. Compare your values of E_2 and E_3 to what you obtain from the de Broglie quantization condition

$$(n/2) = \frac{a/2}{\lambda_{n,\mathrm{I}}} + \frac{a/2}{\lambda_{n,\mathrm{II}}}$$

 $\lambda = h/p = 2\pi/k = h[2m(E - V(x))]^{-1/2}$

F. For the n = 2 and n = 3 energy levels, what are the probabilities, P_2 and P_3 , of finding the particle in the $0 \le x \le a/2$ region?

G. (optional) Will the n = 2 and n = 3 energy levels of the $V_1(x)$ and $V_2(x)$ potentials (defined below) be identical, as suggested by part **E**? Why?

$$\begin{array}{cccc} V_1(x): & V_1(x) = \infty & x < 0, x > a \\ & V_1(x) = 0 & 0 \le x \le a/2 \\ & V_1(x) = V_0 & a/2 < x \le a \end{array} \end{array} \text{ barrier on right side }$$

versus

$$\begin{array}{cccc} V_2(x): & V_2(x) = \infty & x < 0, x > a \\ & V_2(x) = 0 & 0 \le x \le a/4, 3a/4 \le x \le a \\ & V_2(x) = V_0 & a/4 < x \le 3a/4 \end{array}$$
 barrier in the center

H. Solve for $n = 1 \ \psi_1(x)$ and E_1 for V_1 . HINTS: For $a/2 < x \le a$,

$$\psi_{\rm II}(x) = Be^{\kappa_{\rm II}(a-x)} + Ce^{-\kappa_{\rm II}(a-x)}$$
$$\kappa_{\rm II} = [2m(V_0 - E)/\hbar^2]^{1/2}$$

I. (optional) Is E_1 for V_1 larger or smaller than E_1 for V_2 ? Why? A cartoon would be helpful.

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

5.61 Physical Chemistry Fall 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.