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5.61 Physical Chemistry 
Fall, 2017 

Professor Robert W. Field 

FINAL EXAMINATION ANSWERS 

Monday, December 18  

I. Effect of a δ-Function at Q = 0 (30 points + 5) 
on the Energy Levels of a Harmonic Oscillator

Ĥ = −
!2

2µ
d 2

dQ2 +
1
2
kQ2 −αδ(Q); α > 0  

V (Q)= 1
2
kQ2 −αδ(Q)   looks like this: 

A. (6 points) Without doing any calculation, which energy levels are unaffected 
by the –αδ(Q) term?

The odd-v levels (odd symmetry) have a node at Q = 0.  They are not affected by the δ(Q)
delta-function. 

0
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B. (6 points) Without doing any calculation, are the energy levels that are affected 
by the –αδ(Q) term shifted up or down? 

The δ-function acts as an extra well, resulting in a stabilization of all of the odd-v/odd-
symmetry levels.  Another way of answering is that the Ev

(1) = Hvv
(1)  term is negative for all 

odd-v levels, therefore all of these states are lowered in energy.  Another answer is that 
all non-zero matrix elements of Hv,v−1

(1) , appear with a negative energy denominator in 

Ei
(2) =

j≠i
∑

Hij( )2

Ei
(0) −Ej

(0) . 

 
C. (6 points) Without doing any calculation, among the levels that are affected by 

the –αδ(Q) term, is the magnitude of the energy shift larger or 
smaller for a low-v vs. a high-v level? 

The energy shift is larger for a low-v level than for a high-v level.  This is a general rule 
for tunneling.  Then there is another way of answering.  The diagonal and off-diagonal 

elements of αδ(Q) are α
2 ψv(0)ψ ʹv (0)

2

Ev
(0) −E ʹv

(0) .  Since the perturbation term depends on the 

value of ψodd-v(0)ψodd- ʹv (0)  and the HO wavefunction have a decreasing with-v amplitude 
at Q = 0 because the kinetic energy and classical |momentum| is largest at Q = 0.  The 
ψv(0) values decrease with v, so the level shift decreases with v. 

 

D. (12 points) It is possible to show that –αδ(Q) causes a discontinuity of dψv

dQ
 

at Q = 0 

 

dψv

dQ +0

−
dψv

dQ −0

= −
2µ
!2
αψv(0)   

 
  This looks like 

 
 
  Based on the v-dependent magnitude of ψv(Q) at Q = 0 for the even-

v states, justify your answer to part C.  There are two ways to justify 
your answer to part C: (1) using perturbation theory, or (2) by 
adjusting the phase of the energy-shifted ψv(Q) at the turning points 
[Q±, where Ev = V(Q±)] so that ψ(± ∞) = 0. 

0

0 Q

V

0

0
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Your justification of your answer to part C should be based on how 

the magnitude of the discontinuity in dψ
dQ

 at Q = 0 affects the size of 

the energy level shift relative to the energy of the vth harmonic 
oscillator level, ωe(v + 1/2). 

The answers involving perturbation theory have been stated in Part C.  The answer that 
deals explicitly with the discontinuity of the derivative of ψ at Q = 0 is based on the 
requirement that ψv(±∞) = 0.  This is achieved when ψv(Q±) and δψv δQ Q=Q±

 [Q± are the 
turning points, where Ev = V(Q±)] have the unique correct value so that ψv(Q±) can satisfy 
the Q = ±∞ boundary condition.  The –αδ(Q) form creates a cusp in ψv(odd-v) that has 
the form of too much accumulation of phase at Ev

(0)  that is corrected by lowering the 
energy, thereby removing the extra accumulated phase.  If we had a +αδ(Q) perturbation, 
the opposite behavior of too little accumulated phase would result and the energy must be 
increased to compensate.  
 

E. (5 points extra credit)  

Derive the equation in part D for the discontinuity of dψv

dQ
 by 

integrating the Schrödinger equation 
 
lim
ε→0

Hψ −Eψ( )
−ε

+ε

∫ dQ = 0 . 

 
Hψ = −

!2

2µ
d 2ψ
dQ2 +

1
2
kQ2ψ −αδ(Q)ψ    

 
(Hψ – Eψ) = 0 
 

Hψ −Eψ( )
−ε

ε

∫ dQ = 0    

lim
Q=|ε|→0

1
2
kQ2ψ = 0

lim
Q=|ε|→0

αδ(Q)ψ(Q)=αψ(0)
   

 
−ε

+ε

∫ −
!2

2µ
d 2ψ
dQ2 −αψ(0)d −Eψ(0)

⎡

⎣
⎢

⎤

⎦
⎥dQ = 0   

 ↓ ↓ 
 0 0 
 ψ is continuous E is finite 
 

 
−ε

+ε

∫ −
!2

2µ
d 2ψ
dQ2 dQ = −

!2

2µ
dψ
dQ −ε

+ε⎡

⎣
⎢  
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II. Derivation of One Part of the Angular   (25 points) 
 Momentum Commutation Rule 
 
A. (5 points) Show that ÂB̂,Ĉ[ ] = Â B̂,Ĉ[ ]+ Â,Ĉ[ ] B̂ . 
Show [AB,C] = A[B,C] + [A,C]B 
A[B,C] = ABC – ACB 
[A,C]B = ACB – CAB 
A[B,C] + [A,C]B = ABC – CAB 
[AB,C] = ABC – CAB 
 Q.E.D. 
 
B. (20 points)  
 

  

!
L =
!r× !p =

î ĵ k̂
x y z
px py pz

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
= î ypz − zpy( )− ĵ xpz − zpx( )+ k̂ xpy − ypx( )  (1) 

  x,px[ ] = i!   (2) 
 

  
Lx ,Ly⎡⎣ ⎤⎦=+i!Lz   (3) 

 
Use equations (1) and (2) to derive equation (3). 

 

Lx ,Ly⎡⎣ ⎤⎦=+i!Lz
Lx = ypz − zpy
Ly = −xpz + zpx
Lz = xpy − ypx

  

 

ypz − zpy ,−xpz + zpx⎡⎣ ⎤⎦= − ypz , xpz[ ]+ ypz , zpx[ ]+ zpy , xpz⎡⎣ ⎤⎦− zpy , zpx⎡⎣ ⎤⎦

= 0+ ypz , zpx[ ]+ zpy , xpz⎡⎣ ⎤⎦+0

= y pz , z[ ] px + py z, pz[ ] x = −i!ypx + i!pyx
= i! pyx − ypx( )

 

Thus [Lx, Ly] = i!Lz. 
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III. Some Perturbation Theory  (25 points)   
 
All electronic properties of a molecule are parametrically dependent on the displacement 
coordinate, Q.  This is part of the Born-Oppenheimer Approximation.  We are interested 
in how the Q-dependence of the generic “A” property is encoded in the EvJ energy levels. 
 
Molecular Constants:
EvJ hc =ωe(v+1/ 2)+ Be −αe(v+1/ 2)[ ] J(J +1)

+ Ae −αA(v+1/ 2)− AJJ(J +1)+ ADJ
2 J +1( )2⎡⎣ ⎤⎦

 (1) 

 Q Dependence: H hc =ωe(v+1/ 2)+ B(Q)J(J +1)+ A(Q)  (2) 

  
Q = !

4πcµωe

⎡

⎣
⎢

⎤

⎦
⎥

1/2
a+a†( ) ωe  is in cm–1 units( )   (3) 

 B(Q)= Be 1−2Q Re +…[ ] Be  is in cm–1  units( )  (4) 

 
A(Q)= Ae +

∂A
∂Q

Q Ae  is in cm–1  units( )  (5) 

 H
(0) hc =ωe(v+1/ 2)+ BeJ(J +1)+ Ae  (6) 

 
H(1) hc =Q −2 Be Re( ) J(J +1)+ ∂A

∂Q
⎡

⎣⎢
⎤

⎦⎥
 (7) 

Compute the  Hv,v+1
(1)  and  Hv,v−1

(1)  matrix elements and use them to derive the term inEvJ
(2)  

that has the J(J + 1) dependence on the J quantum numbers.  This is the AJ term in 
Equation (1). 
We need to apply NDPT to H(1)  
H(1) ∝ Q and the selection rule for Q is ∆v = ±1, so there is no  Hv,v

(1) = Ev
(1)  contribution. 

EvJ = EvJ
(0) +0+

Hv ʹv
2

EvJ
(0) −E

v−1J
(0)

ʹv =v±1
∑    

Hv ʹv
(1)( )2 = Qv,v±1( )2 −2 Be Re( ) J(J +1)+ ∂A

∂Q
⎡

⎣⎢
⎤

⎦⎥

2

   

 

Qv,v+1
2 =

!
4πcµωe

⎡

⎣
⎢

⎤

⎦
⎥ v+1( )

EvJ
(0) −Ev+1,J = hc −ωe[ ]

 

 

 

Qv,v−1
2 =

!
4πcµωe

⎡

⎣
⎢

⎤

⎦
⎥v

EvJ
(0) −Ev−1,J

(0) = hcωe

 

 
Put it all together 
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Answer to Problem III (continued) 
 

 

Ev
(2) =

!
4πcµωe

⎡

⎣
⎢

⎤

⎦
⎥ −2 Be Re( ) J(J +1)+ ∂A

∂Q
⎛

⎝
⎜

⎞

⎠
⎟
2 v+1
−!cωe

+
v
!cωe

⎡

⎣
⎢

⎤

⎦
⎥

=
!

4πcµωe

⎡

⎣
⎢

⎤

⎦
⎥ −2 Be Re( ) J(J +1)+ ∂A

∂Q
⎛

⎝
⎜

⎞

⎠
⎟
2

−
1
!cωe

⎛

⎝
⎜

⎞

⎠
⎟

   

 
The only term that depends on J(J + 1) is the cross term in the middle factor 
 

+4 Be Re( ) J 2 (J +1)2 + ∂A
∂Q
⎛

⎝
⎜

⎞

⎠
⎟
2

− 4 Be
Re

⎛

⎝
⎜

⎞

⎠
⎟
∂A
∂Q

J(J +1)
⎡

⎣
⎢

⎤

⎦
⎥  

 
    cross term 

 
−AJ =

!
4πcµωe

⎡

⎣
⎢

⎤

⎦
⎥ −4 Be Re( ) ∂A

∂Q
⎡

⎣⎢
⎤

⎦⎥
−
1
!cωe

⎡

⎣
⎢

⎤

⎦
⎥   
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IV. IR Spectroscopy Under a Deadline (50 points) 
 
You have a contract with the Army Research Office (ARO) to determine the equilibrium 
bond length (re), vibrational frequency (ωe), and electric dipole moment (μe1) of the electronic 
ground state of TAt (tritium astatide). Your contract terminates tomorrow and you must write 
a final report today. Last night, on your desperate final attempt to record the vibration-
rotation spectrum of TAt in an electric field of 100,000 Volts/cm, you obtained a 
spectrum unlike any you had observed previously. You suspect that this spectrum is that 
of the TAt v = 1 ← v = 0 transition, but you have no additional scheduled experimental 
time on the hyper-IPECAC facility, which is the only Astatine source (210At85 

 has a half 
life of 8.3 hours) in the world that is capable of generating the At flux needed for your 
experiment. Therefore you must write your final report to ARO without doing any further 
experiments to verify whether your spectrum is that of TAt or some other molecule. The 
likely other molecules include At2, T2, HAt, DAt, HT, and DT (you may ignore all other 
possibilities here). Your continued funding by ARO depends on the timely submittal of 
your report, but your career depends on its correctness. 
 
One of your research assistants has provided you with the following possibly useful 
information:  
 
Atomic Weight H 1.00782 Ionization Potentials H 109,677.581 cm–1 
 D 2.01410  F 140,553.5 cm–1 
 T 3.01605  Cl 104,991 cm–1 
 At 210.0  Br 95,550 cm–1 
    I 84,340 cm–1 
    At unknown 
 
 “Covalent Radius” H 0.32Å  “Ionic Radius” H– 2.08Å 
  F 0.72Å   F– 1.36Å 
  Cl 0.99Å   Cl– 1.81Å 
  Br 1.14Å   Br– 1.95Å 
  I 1.33Å   I– 2.16Å 
  At 1.45Å   At– unknown 
 
Ground State 
 
   ωe Re µe 
HF 1∑  4138.32 cm–1 0.9168 Å 1.8262 Debye 
HCl 1∑  2990.95 cm–1 1.2746 Å 1.1085 Debye 
HBr 1∑  2648.98 cm–1 1.4144 Å 0.8265 Debye 
HI 1∑  2309.01 cm–1 1.6092 Å 0.4477 Debye 
HAt unknown  ------ ------ -------  
F2 1∑g  916.64 cm–1 1.4119 Å -------  
Cl2 1∑g  559.72 cm–1 1.9879 Å -------  
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Br2 1∑g  325.321 cm–1 2.2811 Å -------  
I2 1∑g  214.50 cm–1 2.6663 Å -------  
At2 unknown  ------- -------- -------  
H2 1∑g  4401.21 cm–1 0.7414 Å -------  
 
Some useful conversion formulas (Be is in cm–1, μ is in atomic mass units, and Re is in Å, 
and 1 cm = 108Å):  
 

 Reduced Mass  µ(XY )= MXMY
MX +MY

amu( )  ωe =
1
2πc

k
µ

   (cm–1) 

    Be =
1.6858×10−15

µRe
2    (cm–1) 

In the absence of an electric field, the vibrational rotational energy is given by:  
EvJ hc =ωe v+1/ 2( )−ωexe v+1/ 2( )2 + Be −αe v+1/ 2( )[ ] J(J +1). cm−1( )   

Before analyzing your spectrum and writing your report to ARO, it would be a good idea to 
make some predictions about the spectroscopic properties of TAt.   
PLEASE NOTE:  Many parts of this question can be answered even if you are unable to 
answer an earlier part. 
 

A. (4 points) Use the properties of related atoms and molecules to estimate Re and 
ωe for TAt. Specify the basis for the relationships that you are 
exploiting. 

There are two ways to estimate Re and ωe for TAt.  One is to use some form of linear 
extrapolation.  The other is to use isotope-substitution relationships of TAt to HAt. 
 
There are no molecular constants for HAt, so you need to get clever.  Use linear 
extrapolation to get from HI to HAt and then use isotope relationships to get from HAt to 
TAt. 
 
For ωe and Re ωe(HCl) – ωe(HBr) Re(HCl) – Re(HBr) 
 342 cm–1 –0.140Å 
 ωe(HBr) – ωe(HI) Re(HBr) – Re(HI) 
 339 cm–1 –0.195 
estimate ωe(HAt) = Re(HAt) 
 2309 – 336 = 1973       1.609 + 0.250 = 1.859Å 

Isotope ratio for ωe: 

 

ωe
h

ωe
ℓ =

µℓ

µh
⎛

⎝
⎜

⎞

⎠
⎟

1/2

=

(210)(1)
211

(210)(3)
214

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 0.581 , and for Re:  

 

Re
h

Re
ℓ =1   

 
ωe(TAt) ≈ (0.581)1973 cm–1 = 1146 cm–1 
Re(TAt) ≈ 1.859Å = 1.859 × 10–8 cm 
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B. (6 points) Compute Be from your estimated re.  Let αe ≈ 0 and ωexe ≈ 0 and 
calculate the frequencies (in cm–1) of the 3 lowest-J transitions in the 
P branch and in the R branch of the v = 1 ← v = 0 rotation-vibration 
band.  The P(J) line is the J – 1 ← J transition and the R(J) line is the 
J + 1 ← J transition.  The lowest possible J-value in a 1∑ state is 
J = 0. 

Be =
1.6858×10−15

(µ)(1.859×10−8 )2
=

1.6858×10−15

(2.94)(3.45×10−16 )
   

µ= (3)(210)
213

= 2.94    

 
Be = 1.862 
 
P(J )=ωe + ʹB (J −1)(J )− ʹ́B (J )(J +1)

= ( ʹB − ʹ́B )J 2 − ʹB J − ʹ́B J
≈ 0J 2 −2BJ

   

 
R(J )=ωe + ʹB (J +1)(J +2)− ʹ́B (J )(J +1)

= ( ʹB − ʹ́B )J 2 + 3 ʹB J +2 ʹB − ʹ́B J
≈ 0J 2 +2 ʹB J +2 ʹB

 

 
R(0) ωe + 2B 1136.92 
R(1) ωe + 4B 1133.34 
R(2) ωe + 6B 1129.70 
 
P(0) ωe –2B 1122.24 
P(1) ωe  –4B 1118.42 
P(2) ωe  –6B 1114.54 
 
From these assignments, we get 
 2Be ≈ 1136.92 – 1133.34 = 3.58 cm–1 

  Be = 1.79 cm–1 
 ωe ≈ 1136.92 – 3.58 = 1133.34 cm–1 
 
These are very close to the predicted values 
 ωe = 1146 cm–1 Be = 1.862 cm–1 
 
Looks good for assignment as TAt. 
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C. (4 points) Estimate the electric dipole moment, μel, for TAt, in Debye units. Do 
you expect the T or the At atom to have a net positive charge? Why?  

 
Your record of the infrared spectrum below for what (you hope) is TAt is: 

 
 
You identify the following lines from the spectrum (all in cm-1):  

1058.66, 1063.32, 1067.92, 1072.46, 1076.93, 1081.35, 1085.71, 1090.01, 1094.25, 
1098.43, 1102.55, 1106.61, 1110.60, 1114.54, 1118.42, 1122.24, 1129.70, 1133.34, 
1136.92, 1140.44, 1143.89, 1147.29, 1150.63, 1153.91, 1157.13, 1160.29, 1163.39, 
1166.43, 1169.40, 1172.32, 1175.18, 1177.98  

To estimate µ(TAt) we expect it to be the same as for HAt which we can guestimate by 
linear extrapolation from HCl, HBr, and HI. 
 
µ(HCl) – µ(HBr) 1.1085D – 0.8265D = 0.282 Debye 
µ(HBr) – µ(HI) 0.8265D – 0.4477D = 0.379 Debye 
 
µ(HAt) ≈ 0.4477 – 0.379 – 0.097 ≈ 0. 
 
µ for TAt is likely to be near zero.  There is no way to predict whether T or At will have a 
net positive charge. 
  

 
   

                 

                      

 

 

 

 
 

5.61 Physical Chemistry Final Exam  12/16/09 

MX MY 1 k (cm-1)Reduced Mass : µ(XY ) = ω = MX + MY 
e 2πc µ

1.6858 × 10−15 
Be = 2  (cm-1)

µre 
In the absence of the electric field, the vibrational rotational energy is given by: 

hc = ω e (v + 1 2) − ω exe (v + 1 2)2 + ⎡⎣Be − αe (v + 1 2)⎤⎦ J(J + 1).!!(cm–1 )EvJ 
Before analyzing your spectrum and writing your report to ARO, it would be a good idea to make some 
predictions about the spectroscopic properties of TAt. 

(a) (5 points) Use the properties of related atoms and molecules to estimate re and ωe for TAt. 
(b) (5 points) Compute Be from your estimated re. Let αe ≈ 0 and ωexe ≈ 0 and calculate the 

frequencies (in cm–1) of the 3 lowest-J transitions in the P and R branches of the v = 1 ← v = 0 
rotation-vibration band. 

(c) (5 points) Estimate the electric dipole moment, µel, for TAt. Do you expect the T or the At to have 
a net positive charge? Why? 

You record the infrared spectrum below for what (you hope) is TAt: 

1060  1080  1100  1120  1140  1160  1180 
Energy (cm-1) 

You identify the following lines from the spectrum (all in cm-1): 
1058.66, 1063.32, 1067.92, 1072.46, 1076.93, 1081.35, 1085.71, 1090.01, 1094.25, 1098.43, 
1102.55, 1106.61, 1110.60, 1114.54, 1118.42, 1122.24, 1129.70, 1133.34, 1136.92, 1140.44, 
1143.89, 1147.29, 1150.63, 1153.91, 1157.13, 1160.29, 1163.39, 1166.43, 1169.40, 1172.32, 
1175.18, 1177.98 

(d) (10 points+10 points extra credit) Assign a few lines of the rotation-vibration spectrum. Two or 
three lines each in the R and P branches will be sufficient. Assume αe ≈ 0 and ωexe ≈ 0 and use 

0

 1

 7  

/cm–1	
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D. (10 points) Assign a few lines of the rotation-vibration spectrum. Two or three lines 
each in the R and P branches will be sufficient. Assume αe 

≈ 0 and  
ωexe 

≈ 0 and use your assigned lines to determine ωe 
and Be. Could this 

be TAt?  
I have given the low-J assignments in the answer to Part C.  The key feature to notice is 
the “zero-gap” between the lines at 1122.24 and 1129.70 cm–1.  This gap identifies the 
lowest-J lines in the R and P branches.  It also tells us that the transition is 1∑ - 1∑, not 
1∏ - 1∏.  The zero gap would be larger for a 1∏ - 1∏ transition.  There would also be a 
moderately strong Q(1) line near the middle of the zero-gap. 
 
Looking good for TAt. 
 

E. (4 points) Which of the molecules At2, T2 
, HAt, DAt, HT, and DT are expected 

to have electric dipole allowed rotation-vibration spectra? If you are 
undecided about HT and DT, state your reasons for and against.  

HAt, DAt will definitely have a strong electric dipole allowed transition. 
 
At2 and T2 definitely will not have any dipole allowed transition. 
 
HT and DT will have a very weak dipole allowed transition, but it will have very large ωe 
and Be constants.   
 
The center of electron charge will not quite coincide with the center of mass.  The 
molecule rotates about the center of mass.  There will be a small rotating electric dipole. 

 
F. (4 points) What is the the minimum necessary spectroscopic information that 

could be useful in showing that your observed spectrum is not due to 
any of the molecules from part E that have an allowed rotation-
vibration spectrum? Could your spectrum be due to any of the other 
likely candidate molecules?  

The rotational and vibrational constants for the observed transition are too small for the 
molecule to be HAt or DAt.  This is a huge effect. 
 
The rotational and vibrational constants for HT and DT are vastly too large for a 
plausible assignment of the observed spectrum to HT or DT.  The Stark effect will also 
be very, very small for HT and DT. 
 
The dipole moment for the putative TAt spectrum will be small, much smaller due to that 
for TI or DI. 
 
The small µe will be an excellent confirmation of the TAt assignment. 
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For Question IV.G:  The v = 1 ←v = 0 spectrum consists of a series of absorption lines 
following the selection rule ΔJ = ±1 (R and P branches). In the absence of an external electric 
field, all 2J + 1 MJ 

components of each J-level are exactly degenerate and the spectrum 
consists of simple R and P “lines”. When a 105 

V/cm electric field is applied, a new term is 
added to the Hamiltonian:  
 

  H
!Stark = ε ⋅µ . 

 
If this field lies along the laboratory Z-direction, the MJ-degeneracy is lifted. The only 
non-zero integrals involving the Stark-effect Hamiltonian are  
 

  

φJ ,MJ

*∫ H!
Stark

φJ−1,MJ
dτ =HJ ,M ;J−1,M

Stark = f µelεZ
J 2 −M 2

4J 2 −1

⎡

⎣
⎢

⎤

⎦
⎥

1/2

φJ ,MJ

*∫ H!
Stark

φJ+1,MJ
dτ =HJ ,M ;J+1,M

Stark = f µelεZ
J +1( )2 −M 2

(2J +1)(2J + 3)

⎡

⎣
⎢

⎤

⎦
⎥

1/2  

 
where f is a constant, the value of which depends on the units used.  If µel is in Debye (D), εz 
is in Volts/cm, and  HJM ;J±1,M

Stark  is desired in cm–1, the conversion factor is f = l.6794 × 10–5 
[(V/cm)D]–1. 
 
At E = 105 V/cm, the lines at 1129.70 and 1122.24 cm–1 each split into two components 
separated by 9.0 ×10–3 

cm–1. The lines at 1133.34 and 1118.42 cm–1 
broaden slightly, but no 

splitting is resolvable. The electric field has no perceptible effect on all of the remaining lines.  
See next page for Question IV.G. 
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G. (10 points) Calculate the Stark splitting for a generic diatomic molecule in J = 1 
of a 1∑+ electronic state. The MJ 

= 0 component is pushed down by 
J = 2, MJ 

= 0 and pushed up by J = 0, MJ = 0. The MJ 
= +1 and 

MJ  
= –1 levels are both shifted downward by the same amount by 

their interaction with J = 2, MJ 
= 1, and MJ = –1, but there exist no 

J = 0, MJ 
= ±1 levels to push these J = 2, JM = ±1 levels up. Use 

second-order perturbation theory to express the energy shifts in 
terms of μel 

and Be (specifically, µel
2 B  times some J-dependent 

factors).  
The 1129.70 line is R(0) and the 1122.24 line is P(1).  One expects both of these lines to 
split into 2 components because J = 1 splits and J = 0 only shifts.  The 1133.34 line is 
R(1) and the 1118.42 line is P(2).  both of these lines will split into more than 2 
components (draw a level diagram) and the Stark splittings of J = 2 will be much smaller 
than in J = 1 because of the larger energy denominator for the second-order Stark shift in 
J = 2. 
 
Stark effect for J = 1 of a 1∑+ state: ∆M = 0 selection rule for F-field in z-direction. 

 
E-field in Z-direction 

 

m = 0, J = 0 HStark m = 0, J =1 = fµelεZ
1−0
4 −1
⎡
⎣⎢

⎤
⎦⎥

1/2

m = 0, J =1HStark m = 0, J = 2 = fµelεZ
4 −0
16−1
⎡
⎣⎢

⎤
⎦⎥

1/2

m =±1, J =1HStark m =±1, J = 2 = fµelεZ
4 −1
16−1
⎡
⎣⎢

⎤
⎦⎥

1/2

   

 
f = (1.6794 × 10–5) [V/cm · D]–1 
ε = 1 × 105 V/cm 
 
J = 1, m = 0 (1.6794 × 10–5)2(105)2µ2 
J = 1, m = ±1 

0

±1

0
m

J = 2

J = 1

J = 0

6B

2B

0

m = ±1m = 0

m = ±1

m = 2↓ ↓ ↓

J = 2

J = 1

J = 0

68

28

0

m = ±1m = 0

m = ±1

m = 2

0

±1

0
m
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H. (5 points) Interpret the observed Stark effect and use it to estimate μel.  

The results summarized in IV.G are consistent with a barely observable splitting of 
9 × 10–3 cm–1 in J = 1. 
 
This splitting yields µel =  

 
I. (3 points) Does the observed Stark effect determine the sign of μel?  

The Stark splitting is a second-order effect and samples only (µel)2.  It cannot yield the 
sign of µel. 
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V. From Ψ(x,t) to ρ(t) (35 points) 
 

Ψ(x,t)= c1(t)ψ1(x)+ c2 (t)ψ2 (x)+ c3(t)ψ3(x)+ c4 (t)ψ4 (x)  
 
where {ψn} are eigenfunctions of a time-independent H(0).  En is the eigen-energy 
associated with the ψn eigenfunction 
 

 

Ψ ≡ c =

c1(t)
c2 (t)
c3(t)
c4 (t)

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

   

 
A. (6 points) Evaluate the following objects in terms of the cn (t){ }  and cn

*(t){ } . 
 

(i) (2 points)  c c  

 
c c = ci

*ci
i
∑   a real and positive number. 

 
(ii) (4 points)  c c  

 

c c =

c1
c2
c3
c4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

c1
* c2

* c3
* c4

*( ) =
c1
*c1 c1c2

* c1c3
* c1c4

*

c2c1
* c2

*c2 c2c3
* c2c4

*

c3c1
* c3c2

* c3
*c3 c3c4

*

c4c1
* c4c2

* c4c3
* c4

*c4

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

   

B. (3 points) What is an object like  c c  called? 

 c c  is called the “density matrix”.  It denoted as ρ  or ρ c. 
 
C. (4 points) If Ψ(x,t) is normalized to 1, what combination of cn (t){ }  and cn

*(t){ }  
must be equal to 1? 

∫ Ψ*(x,t)Ψ(x,t)dt = 1 requires that c1c1
* + c2c2

* + c3c3
* + c4c4

*⎡⎣ ⎤⎦=1.  
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D. (5 points) Some notation: n =ψn (x), i.e. 3 =

0
0
1
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

 
(i) (3 points) Evaluate  3 c c 4 . 

 

3 c = 0 0 1 0( )

c1
c2
c3
c4

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

= c3

c 4 = c1
* c2

* c3
* c4

*( )
0
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= c4
*

3 c c 4 = c3c4
*

   

 
(ii) (2 points) What is the relationship of  3 c c 4  to 

 4 c c 3 ? 
ρ is Hermitian, this means ρ† = ρ  

 3 c c 4 = 4 c c 3[ ]*  
 
For questions E, F, and G, simplify to a 2-state system: 

  

Ψ(x,t)= c1e
−iE1t !ψ1(x)+ c2e

−iE2t !ψ2 (x)

1 =
1
0
⎛

⎝
⎜
⎞

⎠
⎟ 2 =

0
1
⎛

⎝
⎜
⎞

⎠
⎟

H 1 = E1 1 H 2 = E2 2
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E. (6 points) At t = 0, Ψ(x,0) = |1〉. 
 

(i) (2 points) Write an expression for Ψ(x,t). 

 
Ψ x,t( ) = c1

1
0
⎛

⎝
⎜
⎞

⎠
⎟e−iE1t ! + c2

0
1
⎛

⎝
⎜
⎞

⎠
⎟e−iE2t !  

 
(ii) (2 points) Write an expression for ρ(t). 

 

ρ(t)=
c1c1

* c1c2
*ei E2−E1( )t !

c1
*c2e

−i E2−E1( )t ! c2c2
*

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

   

 
(iii) (2 points) Is ρ  time-dependent when the system is in a single 

energy eigenstate? 
If c1 = 1, c2 = 0 or c1 = 0, c2 = 1 then ρ  is time-independent because the off-diagonal 
elements are zero and the only time-dependence resides in the off-diagonal elements of 
ρ . 
 

F. (3 points) Suppose we apply a pulse that terminates at t = 0.  This pulse results in 
a flip angle of π/2 at ω12.  Then Ψ(x,0) = 2–1/2 |1〉 + 2–1/2 |2〉. 

 
(i) (1 points) Give an expression for Ψ(x,t). 

 

Ψ x,t( ) = 2−1/2 ψ1e
−iE1t ! +ψ2e

−iE2t !⎡⎣ ⎤⎦

or

=2−1/2 1
0

⎛

⎝
⎜

⎞

⎠
⎟e−iE1t ! + 0

1

⎛

⎝
⎜

⎞

⎠
⎟e−iE2t !

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 
(ii) (2 points) Write an expression for ρ(t). 

 

ρ(t)=

1
2

1
2
e−i E1−E2( )t !

1
2
e+i E1−E2( )t ! 1

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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G. (8 points) When Ψ(x,t) involves a superposition of energy eigenstates: 
 

(i) (2 points) Are the population terms (diagonal elements) of ρ  
time-dependent? 

The diagonal terms are independent of time. 
 
(ii) (3 points) Are the coherence terms (off-diagonal elements) of 

ρ  time-dependent? 
The off-diagonal (coherence) terms are time-dependent. 

 
(iii) (3 points) If a ρij term is time-dependent, at what frequency 

does it oscillate? 
If ρij is time-dependent, it oscillates at 

 
ωij = Ei −Ej( ) ! . 
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VI. Semi-classical Calculation of  (35 points) 

 Vibrational Overlap Integrals in the Diabatic 
 Representation 
 

 
 
Diabatic potential energy curves can cross.  Near-degenerate vibrational states of two 
crossing diabatic curves, V1(R) and V2(R), interact with each other with an interaction 
matrix element 
 

 e1,v1 Hel (R) e2,v2 = e1 Hel (Rc ) e2 v1 v2   
 
where 
 

 e1 Hel (Rc ) e2 ≡ H12
el Rc( )  

 
and Rc is the internuclear distance at which V1(R) intersects V2(R).  For this problem, V1 
and V2 are both harmonic and both have the same value of ωe = 200 cm–1  
 

 
V1(R) hc =15,000 cm−1 +

1
2
k R− Re1( )2

V2 (R) hc =16,000 cm−1 +
1
2
k R− Re2( )2

  

 
 k =ωe

2µ  (µ is the reduced mass) 
 
 ωe = 200 cm–1  

15,000 cm–1

v = 7

v = 12 v = 7

v = 2

V1 V2

2500 cm–1

2000 cm–1

1500 cm–1

1000 cm–1

  500 cm–1

     0 cm–1
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Rc is chosen so that v1 = 7 is near degenerate with v2 = 2 and v1 = 12 is near degenerate 
with v2 = 7. 
 
The stationary phase point, Rsp, is the value of R at which the classical mechanical 
momentum on V1 is the same as that on V2. 
 

A. (5 points) What is the relationship between Rsp nd Rc for the v1 = 7, v2 = 2 pair 
of levels and  for the v1 = 12, v2 = 7 pair of levels? 
 
 Rsp (v1 = 7, v2 = 2) = 
 
Rsp (v1 = 12, v2 = 7) = 

The stationary phase point for two near-degenerate levels is the curve-crossing point, Rc. 
 
Rsp = Rc for both (v1 = 7 and v2 = 2) and (v1 = 12 and v2 = 7). 

 
B. (8 points)  

(i) (5 points) What is the distance between nodes on either side 
of Rc at v1 = 7 and at v2 = 2?  Use the deBroglie 
relationship between λ(R) and the classical 
mechanical momentum, pv(R).  Express pv(R) in 
terms of Ev −V Rsp( )( )  and µ, the reduced mass. 

λ R( ) = h p(R)

pv(R)= 2µ Ev −V (R)( )⎡⎣ ⎤⎦
1/2    

Distance between nodes is 1/2 λ(R). 
1
2
λ(R)= 1

2
h

2µ Ev −V Rc( )( )⎡⎣ ⎤⎦
1/2    

 
(ii) (3 points) Is this node-spacing the same for v1 = 12 and v2 = 7? 

For near-degenerate vibrational levels, e.g. v1 = 7 and v2 = 2, [Ev – V(Rc)] is the same, so 
the node to node distance is the same. 
 

C. (5 points) For a harmonic oscillator with ωe = 200 cm–1, what is the vibrational 
level-independent oscillation period?  Express your answer in 
symbols (ωe, h, c, etc.). 

If ωe = 200 cm–1 
hcωe = Ev −Ev−1

τ =
h
∆ E

=
1
cωe

=
1

3×1010 cm s( ) 200 cm–1( )
=

1
6×1012 s−1 =1.67×10−13s    
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D. (10 points)  
(i) (3 points) What is the probability (expressed in terms of ωe, h, 

and pv(R)) of finding the classical oscillator with 
momentum p > 0 between the Rc-centered pair of 
nodes for v1 = 7 on V1?  [HINT: use semi-classical 
expressions for wavelength and velocity.] 

We want the ratio: node-to-node time
τ / 2

.   Velocity is p/µ, so node-to-node time is 
1
2 λ
p / µ

   

 For v1 = 7:  we want 

E v1 = 7( )−V1(Rc )= hc 15,000 cm−1 + (7.5)200( ) −15,000− 1
2
k Rc − Rel( )2⎛

⎝
⎜

⎞
⎠
⎟

⎡

⎣⎢
⎤

⎦⎥
. 

 
(ii) (2 points) Is this probability different from that for v2 = 2 on 

V2? 
The probabilities are identical because pEv2=2 (Rc )  and λEv2=2 (Rc )  are the same as pEv1=7 (Rc )  

and λEv1=7 (Rc ) . 

(iii) (2 points) How is ψv(R)
2 dR

Rc−λ 4

Rc+λ 4∫   related to the probability 

in part D(i)? 

ψv(R)
2 dR

Rc−λ /4

Rc+λ /4∫  is the node-to-node probability in Part D(i). 

 
(iv) (3 points) Estimate the v1 = 7 v2 = 2  overlap integral. 

v1 = 7 v2 = 2
2  is the node-to-node probability in the Rc region.  This is true because the 

v1 = 7 v2 = 2  integral accumulates in the R = Rc node-to-node region. 

v1 = 7 v2 = 2 = ψv(R)
2 dR

Rc−λ /4

Rc+λ /4∫⎡⎣⎢
⎤
⎦⎥
1/2
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E. (7 points) Estimate the ratio 
 

v1 =12 v2 = 7
v1 = 7 v2 = 2

 

 

HINT:  
pv1=12

2 Rc( )
pv1=7

2 Rc( )
=

1500 cm−1

500 cm−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

We have two stationary phase regions centered at Rc and with the same distance between 
nodes.  The harmonic oscillator period does not depend on v. 
 
However, the velocity in the v1 = 12, v2 = 7 region is larger than that in the v1 = 7, v2 = 2 
region. 
 
pv1=12
2 Rc( )
2µ

=
2500−1000( )2 hc

2µ
   

pv2=7
2 Rc( )
2µ

=
2500−1000( )2 hc

2µ  
 
However,  
 
pv1=7
2 Rc( )
2µ

=
1500−1000( )2 hc

2µ
 

pv2=2
2 Rc( )
2µ

=
1500−1000( )2 hc

2µ
 

  
pv1=12
2 Rc( )
pv1=7
2 Rc( )

=
1500( )2

500( )2
 

Thus v1 =12 v2 = 7
v1 = 7 v2 = 2

=
1500
500

!   

 
 

 
Have a Wonderful Holiday Break!!! 
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USEFUL CONSTANTS and FORMULAS 
 
1mW = 10–3W = 10–3 J s–1 1nm = 10–9m 1eV = 1.602 × 10–19 J 
h = 6.63 × 10–34 J s ! = 1.05 × 10–34 J s c = 3.0 × 108 m s–1 
hc = 2.0 × 10–25 J m me = 9.11 × 10–31 kg e = 1.602 × 10–19 C 
λν = c ε0 = 8.854 × 10–12 Cs2 kg–1m–3 E = hν  λ = h/p 
ℓn = mrν = n! rn = n2a0 a0 = 5.29 × 10–11 m 
ω = 2πcω = k µ[ ]1/2   c = 3 × 1010 cm/s x(t) = sin ωt 
Ev = hcω  (v + 1/2)   
 

  
x = !

4πcµω
⎡
⎣⎢

⎤
⎦⎥

1/2

a + a†( )    p = !πcµω[ ]1/2 i a† − a( )   

 
Particle in a box 
 

 
En =

n2!2

8ma2
= n

2!2π 2

2ma2
   ψ n 0 ≤ x ≤ a( ) = 2

a
⎛
⎝⎜

⎞
⎠⎟
1/2

sin nπx
a

⎛
⎝⎜

⎞
⎠⎟  

 
Harmonic Oscillator 
 

 
En = n + 1

2
⎛
⎝⎜

⎞
⎠⎟ hν = n + 1

2
⎛
⎝⎜

⎞
⎠⎟ !ω  

 
α =

kµ
!

= µω
!

 
 
!ν = 1

2πc
k
µ

⎛
⎝⎜

⎞
⎠⎟

1/2

, V = 1
2
µω2x2  

 

e−αx
2

−∞

∞

∫ dx = π
α

 x2
–∞

∞

∫ e−αx
2

dx = π
α
1
2α

 
 

x2n
–∞

∞

∫ e−αx
2

dx = 21⋅3⋅5!(2n −1)
2n+1an

π
α

 

 

 ψ 0 (x) =
α
π

⎛
⎝⎜

⎞
⎠⎟
1/4

e−αx
2 2     ψ1 (x) =

1
2

α
π

⎛
⎝⎜

⎞
⎠⎟
1/4

2α1/2x( )e−αx2 2  

 

 ψ 2 (x) =
1
8

α
π

⎛
⎝⎜

⎞
⎠⎟
1/4

4αx2 − 2( )e−αx2 2  

 ψ 3 (x) =
1
48

α
π

⎛
⎝⎜

⎞
⎠⎟
1/4

8α3/2x3 −12α1/2x( )e−αx2 2  

 
 Raising and lowering operators 
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â = µω

2!
⎛
⎝⎜

⎞
⎠⎟
1/2

x̂ + i p̂
µω

⎛
⎝⎜

⎞
⎠⎟

 
  
â† = µω

2!
⎛
⎝⎜

⎞
⎠⎟
1/2

x̂ − i p̂
µω

⎛
⎝⎜

⎞
⎠⎟

 

  
x̂ = !

2µω
⎛
⎝⎜

⎞
⎠⎟
â+ + â−( )   

 
p̂ = i hµω

2
⎛
⎝⎜

⎞
⎠⎟ â

+ − â−( )  

 

 

â+ ψ n = â+ n = n +1ψ n+1 = n +1 n +1

â− ψ n = â− n = n ψ n−1 = n n −1

â+ = a†, a– = a (notation)   
 

Hydrogen atom 
 
Three-dimensional operators in spherical coordinates 
 

 
H! r,θ,φ( ) = − "

2

2µ
1
r2

∂
∂r

r2 ∂
∂r

⎛
⎝⎜

⎞
⎠⎟ +

1
r2 sinθ

∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
r2 sin2 θ

∂2

∂φ2
⎡

⎣
⎢

⎤

⎦
⎥ +V r,θ,φ( )  

 

  
 
L̂2 = −!2 1

sinθ
∂
∂θ

sinθ ∂
∂θ

⎛
⎝⎜

⎞
⎠⎟ +

1
sin2 θ

∂2

∂φ2
⎡

⎣
⎢

⎤

⎦
⎥ L̂z = −i! ∂

∂φ
 

 

 U = −Ze2

4πε0r
, 

 
En =

−Z 2e2

8πε0a0n2 = −Z 2

2n2 atomic units( ) n = 1,2,3,…, a0 =
4πε0!2

µe2  

 
Radial integrals 
 

xn
0

∞

∫ ex/adx = n!an+1  
 
H atom spatial wavefunctions (where σ = Zr/a0.  In atomic units a0 = 1 and σ = Zr.) 
 

n = 1 ℓ = 0 m = 0 ψ100 = ψ1s =
1
π

Z
a0

⎛
⎝⎜

⎞
⎠⎟
3/2

e−σ  

n = 2 ℓ = 0 m = 0 ψ 200 = ψ 2 s =
1
32π

Z
a0

⎛
⎝⎜

⎞
⎠⎟
3/2

2 −σ( )e−σ/2  

 ℓ = 1 m = 0 ψ 210 = ψ 2 pz =
1
32π

Z
a0

⎛
⎝⎜

⎞
⎠⎟
3/2

σe−σ/2 cosθ  

 ℓ = 1 m = ±1 ψ 21±1 =
1
64π

Z
a0

⎛
⎝⎜

⎞
⎠⎟
3/2

σe−σ/2 sinθe± iφ  

n = 3 ℓ = 0 m = 0 ψ300 =
1

81 3π
Z
a0

⎛
⎝⎜

⎞
⎠⎟
3/2

27−18σ + 2σ2( )e−σ/3 = ψ3s  



5.61 Final Examination ANSWERS Fall, 2017 Page 25 

  revised 12/19/17 3:15 PM 

Perturbation Theory 
 

  H! = H!
0( )
+H!

(1)
 ψ n = ψ n

(0 ) +ψ n
(1)  En = En

(0 ) + En
(1) + En

(2 )  
 

 
En
(1) = ∫ ψ n

(0 )*H!
(1)
ψ n
(0 )dτ = ψ n

(0 )* H!
(1)

ψ n
(0 )  

 
 
ψ n
(1) =

j≠n
∑ ∫ψ j

(0 )*H!
(1)
ψ n
(0 )dτ

En
(0 ) − Ej

(0 ) ψ j
(0 ) =

j≠n
∑

ψ j
(0 )* H!

(1)
ψ n
(0 )

En
(0 ) − Ej

(0 ) ψ j
(0 )  

 

  
 
En
(2 ) =

j≠n
∑ H! nj

(1)
H! jn

(1)

En
(0 ) − Ej

(0 ) = En
(2 ) =

j≠n
∑

n H!
(1)
j j H!

(1)
n

En
(0 ) − Ej

(0 )  

 
Spin operators 
 

Si =
h
2
σi σ x =

0 1
1 0

⎛
⎝⎜

⎞
⎠⎟
; σ y =

0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟
; σ z =

1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

 

S! + = h 0 1
0 0

⎛
⎝⎜

⎞
⎠⎟

S! − = h 0 0
1 0

⎛
⎝⎜

⎞
⎠⎟

 

 
S! ± = S! x ± iS! y  

 

 ±x = 1
2

+z ± −z( ) ±y = 1
2

+z ± i −z( )  

  
+n = cos θ / 2( ) +z + eiφ sin θ / 2( ) −z
−n = sin θ / 2( ) +z − eiφ cos θ / 2( ) −z

 

 
Turning points of V(x): 
 
 V x± (v)( ) = E(v)    
 

 E(v) = hcω (v +1/ 2) = 1
2
k x± (v)[ ]2  
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