MIT OpenCourseWare
http://ocw.mit.edu

5.62 Physical Chemistry II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Information for Hour Exam

The exam will be closed book and closed notes, but you will be allowed one sheet of 8.5×11 " paper (both sides) with your own notes, equations, and inspirational quotations.

YOU MUST BRING A "SIMPLE" CALCULATOR!!

MATERIAL COVERED:

Lectures 1-12
Problem Sets 1-3

Combinatorics

All thermodynamic quantities $\left(\mathrm{U}, \mathrm{H}, \mathrm{A}, \mathrm{G}, \mathrm{S}, \mu, \mathrm{C}_{\mathrm{V}}, \mathrm{C}_{\mathrm{p}}, \mathrm{p}\right)$ from Q .
Multinomial trick and, for $\bar{n}_{i} \ll 1$, replace $\frac{N \text { ! }}{\Gamma}$ by !

$$
\prod_{i} n_{i}!
$$

$\mathrm{Q}=\frac{\mathrm{q}^{\mathrm{N}}}{\mathrm{N}!}$ provided that $\mathrm{q} \gg \mathrm{N}$, equivalent to $\mathrm{e}^{-\mu / \mathrm{kT}}=\mathrm{q} / \mathrm{N} \gg 1$
$\overline{\mathrm{n}_{\mathrm{i}}}=\frac{1}{\mathrm{e}^{\left(\mathrm{\varepsilon}_{\mathrm{i}}-\mu\right) / k T} \pm 1} \quad(+1 \mathrm{FD}$, no $1 \mathrm{~B},-1 \mathrm{BE})$
$\omega(\mathrm{n}, \mathrm{g})$ for BE, B, and FD
$\overline{\mathrm{n}}_{\mathrm{i}}^{\mathrm{FD}} \leq \overline{\mathrm{n}}_{\mathrm{i}}^{\mathrm{B}} \leq \overline{\mathrm{n}}_{\mathrm{i}}{ }^{\mathrm{BE}}$
$\varepsilon_{\mathrm{L}, \mathrm{M}, \mathrm{N}}=\frac{\mathrm{h}^{2}}{8 \mathrm{~m}}\left[\frac{\mathrm{~L}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{M}^{2}}{\mathrm{~b}^{2}}+\frac{\mathrm{N}^{2}}{\mathrm{c}^{2}}\right]$
$\mathrm{q}_{\text {trans }}=\left[\frac{2 \pi \mathrm{mkT}}{\mathrm{h}^{2}}\right]^{3 / 2} \mathrm{~V} \quad \mathrm{~V}=\mathrm{abc} \quad$ (crucial approximation in deriving $\mathrm{q}_{\text {trans }}$?)
$\varepsilon \rightarrow \mathrm{q} \rightarrow \mathrm{Q} \rightarrow$ thermodynamic quantities. Key is $\ln (\mathrm{q})$ permits all key contributions to be separated as additive factors.

Classical Mechanical formulation

$$
\mathrm{q}_{\mathrm{Cl}}=\mathrm{h}^{-3} \int \ldots \int \mathrm{dq}_{\sim}^{3} \mathrm{dp}_{\sim}^{3} \mathrm{e}^{-\varepsilon\left(q^{3} \cdot \underline{p}^{3}\right) / \mathrm{kT}}
$$

Equipartition: $\varepsilon=(1 / 2) \mathrm{kT}$ per p^{2} or q^{2} degree of freedom $[\mathrm{H}(\mathbf{p}, \mathbf{q})]$ per particle.
Probability distributions.
Change of variable.
Density of states.
Dimensional analysis.

$$
\begin{aligned}
\mathrm{P}\left(\varepsilon_{\mathrm{x}}\right) \mathrm{d} \varepsilon_{\mathrm{x}} & =\mathrm{P}(\mathrm{~L}) \mathrm{dL} \\
\mathrm{P}\left(\varepsilon_{\mathrm{x}}\right) & \left.=\underset{\substack{\mathrm{dL} \\
\mathrm{~d}_{\mathrm{x}}}}{\frac{\mathrm{dL}}{\text { denit }} \text { states }} \mathrm{P}(\mathrm{~L}) \quad \text { (want } \frac{\mathrm{dL}}{\mathrm{~d} \varepsilon_{\mathrm{x}}} \text { and } \mathrm{P}(\mathrm{~L}) \text { as explicit functions of } \varepsilon_{\mathrm{x}}\right) \\
\mathrm{P}\left(\varepsilon_{\mathrm{x}}\right) & =(\pi \mathrm{kT})^{-1 / 2} \varepsilon_{\mathrm{x}}^{-1 / 2} \mathrm{e}^{-\varepsilon_{\mathrm{x}} / k T}
\end{aligned}
$$

verify by normalization
verify by computing $\bar{\varepsilon}$ and finding agreement with $\bar{\varepsilon}=\mathrm{kT}^{2}\left(\frac{\partial \ln \mathrm{q}}{\partial \mathrm{T}}\right)_{\mathrm{V}}$

$$
\overline{\mathrm{x}}=\int_{0}^{\infty} \mathrm{P}(\mathrm{x}(\varepsilon)) \mathrm{x}(\varepsilon) \mathrm{e}^{-\varepsilon / \mathrm{kT}} \mathrm{~d} \varepsilon
$$

$\mathrm{q}(\mathrm{T}, \quad)=\mathrm{q}_{\text {trans }} \mathrm{q}_{\text {int }}$
$\mathrm{Q}(\mathrm{N}, \mathrm{T}, \quad)=\left(\frac{\mathrm{q}^{\mathrm{N}}}{\mathrm{N}!}\right) \mathrm{q}_{\text {int }}^{\mathrm{N}}$
Internal degrees of freedom: electronic, vibration, rotation, nuclear spin.
Low T limit.
High T limit.
$\mathrm{q}_{\text {elect }}=\mathrm{g}\left(\varepsilon_{0}\right) \quad$ lowest electronic state.
For diatonics: $\left\{\begin{array}{l}\mathrm{q}_{\mathrm{rot}}=\frac{\mathrm{kT}}{\sigma \mathrm{hcB}_{\mathrm{e}}}+\frac{1}{2}+\ldots \\ \mathrm{B}_{\mathrm{e}}=\frac{\mathrm{h}}{8 \pi^{2} \mathrm{Ic}}, \mathrm{I}=\mu \mathrm{R}_{\mathrm{e}}^{2}\end{array}\right.$
σ is symmetry number.

