MIT OpenCourseWare
http://ocw.mit.edu

5.62 Physical Chemistry II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.62 Lecture \#12: Rotational Partition Function. Equipartition

Readings: Hill, pp. 153-159;
Maczek, pp. 47-53
Metiu, pp. 131-142

DEGREES OF FREEDOM

A molecule with n atoms has $3 n$ "degrees of freedom" or $3 n$ coordinates to describe its position and therefore has $3 n$ ways of incorporating energy due to nuclear motion where n is the number of atoms in the molecule.

For a diatomic or a linear polyatomic molecule:

3 TRANSLATIONAL	degrees of freedom
2 ROTATIONAL	degrees of freedom
$3 n-5$ VIBRATIONAL	degrees of freedom

3n TOTAL degrees of freedom
For a diatomic molecule $3 n-5=1$ vibrational degree of freedom

MOLECULAR ROTATIONAL PARTITION FUNCTION $-\mathrm{q}_{\mathrm{rot}}-$ DIATOMIC

$$
\begin{aligned}
& \quad \varepsilon_{\text {rot }}(J)=J(J+1) \text { hcB }{ }_{e} \text { for } J=0,1,2, \ldots \quad g_{J}=2 J+1 \\
& q_{\text {rot }}=\sum g(\varepsilon) e^{-\varepsilon / k T}=\sum_{J=0}^{\infty}(2 J+1) \exp \left[-h c B_{e} J(J+1) / k T\right] \\
& \begin{array}{c}
\text { allowed rotational } \\
\text { energies }
\end{array}
\end{aligned}
$$

Question: How do you do the summation? Two cases ... (Low-T limit case [next Lecture])

Case $1: \varepsilon_{\text {rot }} / \mathrm{kT} \ll 1 \quad$ or $\quad \mathrm{hcB}_{\mathrm{e}} \mathrm{J}(\mathrm{J}+1) / \mathrm{kT} \ll 1$
[More precisely, we want $(\mathrm{E}(\mathrm{J}+1)-\mathrm{E}(\mathrm{J})) \ll \mathrm{kT}$ at $\mathrm{E}(\mathrm{J}) \approx \mathrm{kT}$.)
rotational states are closely spaced in energy compared to kT

- since energy spacings are so close together, can consider
$\varepsilon_{\text {rot }}$ as continuous and use Euler-MacLaurin Summation Formula (draw a picture!)
this case is the classical or high-temperature limit.

$$
\sum_{\mathrm{J}=\mathrm{m}}^{\mathrm{n}} \mathrm{f}(\mathrm{~J})=\int_{\mathrm{m}}^{\mathrm{n}} \mathrm{f}(\mathrm{~J}) \mathrm{dJ}+\frac{1}{2}[\mathrm{f}(\mathrm{~m})+\mathrm{f}(\mathrm{n})]+\text { residue } \ldots
$$

so:

$$
\mathrm{q}_{\text {rot }}=\int_{0}^{\infty}(2 \mathrm{~J}+1) \exp [-\mathrm{hcB} \mathrm{~B}(\mathrm{~J}+1) / \mathrm{kT}] \mathrm{dJ}+\frac{1}{2}\left[\bigwedge_{\mathrm{J}=0}^{1}+\prod_{\mathrm{J}=\infty}^{0}\right]+\ldots
$$

substitute $\omega=\mathrm{J}(\mathrm{J}+1)$ thus $\mathrm{d} \omega=(2 \mathrm{~J}+1) \mathrm{dJ}$

$$
\begin{aligned}
q_{\text {rot }} & =\int_{0}^{\infty} \exp \left[-h c B_{e} \omega / k T\right] d \omega+\frac{1}{2}+\ldots \\
& =\left.\frac{-k T}{h c B_{e}} e^{-h c B_{e} \omega / k T}\right|_{0} ^{\infty}+\frac{1}{2}+\ldots \\
& =0-\left(\frac{-k T}{h c B_{e}}\right)+\frac{1}{2}+\ldots \\
q_{\text {rot }} & =\frac{k T}{h c B_{e}}+\frac{1}{2} \approx \frac{k T}{h c B_{e}} \text { usually can ignore the } \frac{1}{2}
\end{aligned}
$$

What happens for a ${ }^{1} \Delta$ state where $\mathrm{J}_{\text {min }}=2$ rather than 0 ?
Hold on - One correction needed to $\mathrm{q}_{\text {rot }} \ldots$
SYMMETRY NUMBER $\equiv \sigma \equiv$ \# of equivalent orientations in space which leave appearance of molecule unchanged - \# of indistinguishable orientations in which molecules can be found as a result of rotation. We divide by σ because otherwise we would be overcounting by counting indistinguishable orientations.

A homonuclear molecule, O_{2}, has $\sigma=2$ because an end over end (half) rotation by π does not alter the appearance of O_{2}.

The symmetry number is rigorously based on the nuclear spins. We'll see the details later.

$$
\text { So } \quad \mathrm{q}_{\text {rot }}=\frac{\mathrm{kT}}{\text { 大hcB }} \quad \begin{aligned}
& \text { for } \mathrm{hcB} \\
& \text { or } \mathrm{g}_{\mathrm{rot}} \ll \mathrm{kT}
\end{aligned}
$$

$$
\text { where } \begin{aligned}
\sigma \equiv \text { symmetry \# } & =1 \text { for heteronuclear diatomics } \\
& =2 \text { for homonuclear diatomics }
\end{aligned}
$$

Really this is $q_{\text {rot-nuc }}$, but we'll refer to it as $q_{\text {rot }}$.
Define $\theta_{\text {rot }}=\frac{\mathrm{hcB}_{\mathrm{e}}}{\mathrm{k}} \quad$ "rotational temperature", θ_{rot}
(has units of K)

$$
\text { So } \mathrm{q}_{\text {rot }}=\frac{\mathrm{kT}}{\sigma h c B_{\mathrm{e}}}=\frac{\mathrm{T}}{\sigma \theta_{\text {rot }}} \text { for } \quad \theta_{\text {rot }} \ll \mathrm{T}
$$

Molecular Rotational Partition Function for Diatomics
also written as ...

$$
\mathrm{q}_{\text {rot }}=\frac{8 \pi^{2} \mathrm{IkcT}}{\sigma \mathrm{~h}^{2}} \quad \text { because } \mathrm{B}_{\mathrm{e}}=\frac{\mathrm{h}}{8 \pi^{2} \mathrm{Ic}} \quad \mathrm{I}=\mu \mathrm{Re}^{2}
$$

Let's go back and check whether dropping extra terms in Euler-MacLaurin series was a good approximation ...

$$
\mathrm{q}_{\mathrm{rot}}=\frac{\mathrm{kT}}{\sigma \mathrm{rhcB}_{\mathrm{e}}}+\frac{1}{2}+\ldots
$$

MOLECULE
$\mathrm{B}_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right) \quad \sigma \quad \theta_{\text {rot }}(\mathrm{K}) \quad \mathrm{q}_{\text {rot }}=\mathrm{T} / \sigma \theta_{\text {rot }}+1 / 2$ \% error (neglect of $1 / 2$)

HCl	10.59	1	15.24	$19.688+0.5$	2.5
CO	1.93	1	2.77	$108.30+0.5$	0.4
I 2	0.037	2	0.1065	$1408.5+0.5$	0.04

As B_{e} becomes smaller or equivalently as $\theta_{\text {rot }}$ becomes smaller compared to T, dropping extra terms becomes better approximation;
also, discrete to continuous approximation becomes better.

Contributions of Rotation to Thermodynamic Functions for $\varepsilon_{\mathrm{rot}} \ll \mathrm{kT}$

$$
\mathrm{q}_{\mathrm{rot}}=\frac{\mathrm{kT}}{\sigma \mathrm{hcB}_{\mathrm{e}}} \rightarrow \mathrm{Q}_{\mathrm{rot}}=\left(\mathrm{q}_{\mathrm{rot}}\right)^{\mathrm{N}}=\left(\frac{\mathrm{kT}}{\sigma \mathrm{hcB}_{\mathrm{e}}}\right)^{\mathrm{N}}
$$

$$
\mathrm{A}_{\mathrm{rot}}=-\mathrm{kT} \ln \mathrm{Q}_{\mathrm{rot}}=-\mathrm{NkT} \ln \mathrm{q}_{\mathrm{rot}}=-\mathrm{NkT} \ln \left(\frac{\mathrm{kT}}{\sigma \mathrm{hcB}}\right)
$$

$$
\mathrm{p}_{\text {rot }}=-\left(\frac{\partial \mathrm{A}}{\partial \mathrm{~V}}\right)_{\mathrm{N}, \mathrm{~T}}=\frac{\partial}{\partial \mathrm{V}}\left(\mathrm{NkT} \ln \left(\frac{\mathrm{kT}}{\sigma \mathrm{\sigma hcB}} \mathrm{e}_{\mathrm{e}}\right)\right)_{\mathrm{N}, \mathrm{~T}}=0
$$

because $\varepsilon_{\text {rot }}$ does not depend on V

$$
\begin{aligned}
\mathrm{E}_{\mathrm{rot}} & =\mathrm{kT}^{2}\left(\frac{\partial \ln \mathrm{Q}_{\mathrm{rot}}}{\partial \mathrm{~T}}\right)_{\mathrm{N}, \mathrm{~V}}=\mathrm{NkT}^{2} \frac{\partial \ln \mathrm{q}_{\mathrm{rot}}}{\partial \mathrm{~T}} \\
& =\mathrm{NkT}^{2} \frac{\partial \ln \mathrm{~T}}{\partial \mathrm{~T}}+\mathrm{nkT} \mathrm{~T}^{2} \frac{\partial \ln \left(\mathrm{k} / \sigma \operatorname{hcB_{e})}\right.}{\partial \mathrm{T}}=\mathrm{NkT}^{2}\left(\frac{1}{\mathrm{~T}}\right)+0
\end{aligned}
$$

average rotational energy of a diatomic molecule

$$
\mathrm{E}_{\text {rot }}=\mathrm{NkT} \quad \text { for } \theta_{\text {rot }} \ll \mathrm{T} \text { or } \varepsilon_{\text {rot }} \ll \mathrm{kT} \quad\left(\operatorname{not} \frac{1}{2} \mathrm{NkT}\right. \text {; why?) }
$$

a "quantum" result (but based on the approximation of replacing a sum by an integral)

CLASSICAL EQUIPARTITION RESULT FOR ROTATIONAL ENERGY

$$
2\left(\frac{1}{2} \mathrm{NKT}\right)=\mathrm{NkT}
$$

Each degree of translational and rotational energy contributes (1/2)kT to total energy. For a diatomic molecule, there are 2 rotational degrees of freedom [Why 2?].
Therefore, $2(1 / 2 \mathrm{NkT})=\mathrm{NkT}$. This is why $\overline{\mathrm{C}}_{\mathrm{V}}$ for monatomic gases is $\sim(3 / 2) \mathrm{R}$ and for most diatomic gases at moderate T is $\sim(5 / 2) \mathrm{R}$!

Quantum and classical approach lead to same result for rotation at 300 K . Why? Because rotational energy levels are very closely spaced compared to kT. We calculated
qrot by approximating a sum over energy levels as an integral over energy levels. Rotational energy levels are so closely spaced that they "look" continuous compared to kT at room temperature for most molecules. $\mathrm{E}_{\text {rot }}$ does not depend on the properties of the molecule in the classical limit!
"Quantum" result for C_{V}

$$
\begin{aligned}
\mathrm{C}_{\mathrm{V}}^{\text {rot }}= & \left(\frac{\partial \mathrm{E}}{\partial \mathrm{~T}}\right)_{\mathrm{N}, \mathrm{~V}}=\mathrm{Nk}\left(\frac{\partial \mathrm{~T}}{\partial \mathrm{~T}}\right)=\mathrm{Nk}=\mathrm{R} \text { if } \mathrm{N}=\mathrm{N}_{\mathrm{a}}\left(\text { or } \mathrm{C}_{\mathrm{V}}^{\text {rot }}=\mathrm{nR}\right) \\
& \text { for } \varepsilon_{\mathrm{rot}} \ll \mathrm{kT} \text { or } \theta_{\mathrm{rot}} \ll \mathrm{~T}\left(\varepsilon_{\mathrm{rot}}\right. \text { needs to be better defined, see below) }
\end{aligned}
$$

1. More about high temperature limit, which is the requirement that permits the sum,

$$
q_{\text {rot }}=\sum_{J_{\min }}^{\infty} g(\varepsilon(J)) e^{-h c B J(J+1) / k T}
$$

to be replaced by an integral,

$$
q_{\text {rot }}=\int_{J_{\min }}^{\infty} d J(2 J+1) e^{-h c B J(J+1) / k T}+\frac{1}{2}\left[\left(2 J_{\min }+1\right)+0\right] .
$$

It is necessary that $\Delta \varepsilon_{\text {rot }} \ll k T$ at $\varepsilon_{\text {rot }} \approx k T$. The rotational energy level spacing must be small relative to $k T$.

$$
\begin{aligned}
\Delta \varepsilon_{\text {rot }}(J) & =h c B[(J+1)(J+2)-J(J+1)] \\
& =h c B 2(J+1)
\end{aligned}
$$

This spacing must be small relative to $k T$ when $\varepsilon_{\text {rot }}=k T$

$$
\varepsilon_{r o t}=h c B J(J+1)=k T
$$

Thus $\quad h c B J(J+1) \gg h c B 2(J+1)$, which requires that

$$
\mathrm{J} \gg 2 .
$$

This means that we want

$$
k T \gg \varepsilon_{\text {rot }}(J=2)=6 h c B
$$

$k T \gg 6 h c B$ is the requirement that specifies when it is OK to replace sum by integral.
2. Some useful stuff concerning fractional populations in rotational levels.
A. fraction of population in J-th level

$$
\begin{aligned}
f_{J} & =\frac{(2 J+1) e^{-\theta_{\text {roo }}(J+1) / T}}{\frac{T}{\sigma \theta_{\text {rot }}}} \\
\theta_{\text {rot }} & =\frac{h c B}{k}
\end{aligned}
$$

B. Most populated J

$$
\frac{d f_{J}}{d J}=0=\frac{2 e^{-\theta_{\text {rot }} J(J+1) / T}-(2 J+1)^{2}\left(\theta_{\text {rot }} / T\right) e^{-\theta_{\text {rot }} J(J+1) / T}}{q_{\text {rot }}}
$$

Thus

$$
\begin{aligned}
2 & =(2 J+1)^{2} \frac{\theta_{\text {rot }}}{T} \\
J_{\max } & =\frac{\left(\frac{2 T}{\theta_{\text {rot }}}\right)^{1 / 2}-1}{2} .
\end{aligned}
$$

For $T / \theta_{\text {rot }}=100$

$$
J_{\max }=6.5
$$

C. Fractional population in most populated J level

$$
f_{J_{\max }}=\frac{\left[\frac{2 T}{\theta_{\text {rot }}}\right]^{1 / 2} e^{\frac{-\theta_{r o t}}{4 T}\left(\left[\frac{2 T}{\theta_{r o t}}\right]^{1 / 2}-1\right)\left[\left[\frac{2 T}{\theta_{r o t}}\right]^{1 / 2}\right)}}{T / \theta_{\text {rot }}} \approx\left(\frac{2 \theta_{\text {rot }}}{T}\right)^{1 / 2} e^{-1 / 2}=0.85\left(\frac{\theta}{T}\right)^{1 / 2} .
$$

For $T / \theta_{\text {rot }}=100 \quad f_{J}^{\max }=0.085$.
D. Fractional population in $J=\frac{T}{\theta_{\text {rot }}}$. This is a simple-minded way of asking about the population of the "last" thermally accessible level.

$$
f_{J=T / \theta_{\text {rot }}}=\frac{\left(2 \frac{T}{\theta_{\text {rot }}}+1\right) e^{-\left(\frac{T}{\theta_{\text {rot }}}\right)\left(\frac{T}{\theta_{r o t}}+1\right) \frac{\theta_{r o t}}{T}}}{T / \theta_{\text {rot }}}=2 e^{-\left(\frac{T}{\theta_{r o t}}+1\right)} .
$$

For $T / \theta_{\text {rot }} \approx 100$

$$
f_{J=T / \theta_{r o t}}=2 e^{-101}=3 \times 10^{-44} .
$$

This is a very small fractional population. It would be more appropriate to ask for the fractional population of the J^{\prime} value for which

$$
\sum_{J_{\min }}^{J^{\prime}}(2 J+1)=T / \theta_{r o t},
$$

because this sets the total number of significantly populated J, M_{J} levels equal to $q_{\text {rot }}$. Using

$$
\sum_{J=0}^{J^{\prime}}(2 J+1)=\left(J^{\prime}+1\right)^{2}
$$

and $\mathrm{T} / \theta_{\mathrm{rot}}=100$, we get $J^{\prime}=9$ and $f_{J^{\prime}=9}=\frac{19 e^{-9(10) / 100}}{100}=0.077$.
Low-T limit results for $\overline{\mathrm{E}}$ and $\overline{\mathrm{C}}_{\mathrm{V}}$ next time. But what do you know without any equations about $\overline{\mathrm{E}}$ and $\overline{\mathrm{C}}_{\mathrm{V}}$ in the limit $\mathrm{T} \rightarrow 0 \mathrm{~K}$?

