MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.62 Physical Chemistry II Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

Information for Second Hour Exam

The exam will be closed book and closed notes, but you will be allowed *one* sheet of $8.5 \times 11''$ paper (both sides) with your own notes, equations, and inspirational quotations. Note that you must incorporate a subset of your notes for Exam I onto this single sheet.

You must bring a "simple" calculator. There will be a lot of numerical calculations.

Material covered:

Lectures 11-21 Problem Sets #4-#6

 $q_{trans}, q_{rot}, q_{vib}$, $q_{electronic}$

Partition functions for internal degrees of freedom (including nuclear) of atoms, diatomic, and polyatomic molecules.

nuclear spin, ortho/para symmetry number ortho/para Difference between q_{vib} and q_{vib}^{*} Computation of Thermodynamic quantities for gases from spectroscopic data.

Classical Mechanical formulation of Q(N,V,T)

Equipartition High-T and Low-T limits for all thermodynamic quantities, especially C_v and U.

Model inter-particle potentials

Intermolecular interactions cluster expansion

van der Waals and Virial equation

Chemical equilibrium: $\mu_{A}^{\circ}, \mu_{B}^{\circ}$, etc. $\rightarrow K_{p}$ $K_{p}(T) \leftrightarrow$ partition functions, group factors by type ΔD_{0}^{0}

Dulong and Petit and Einstein models for the heat capacity of a solid.