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Kinetic Theory of Gases: Effusion and Collisions 

EFFUSION Consider the process by which molecules escape through a hole in a vessel
and into a vacuum 

size “d”

slit

oven walls at

definite T

We assume that: (1) d is so small that the
pressure in the vessel is unchanged; (2) the
effusion does not perturb the velocity of the
gas in the vessel; (3) there are no collisions
when the molecules pass through the slit. 

Molecules that would have been incident on the portion of the wall where the hole is, 

now pass through the hole. This creates a flux of particles defined as the number of 

particles per unit area per unit time that leave the vessel. 

dA

vdt

!

Consider a square hole of area dA. A 
particle that is a distance vdt from the hole

!moves with speed v and at angle from 
the surface normal toward the hole. 

Draw a parallelepiped around the hole with length equal to vdt, at angle θ from the 

normal. All molecules within this volume moving toward the hole (i.e., with the correct 

!," angle) with speed v will pass through the hole in time interval dt. 

ρ = density of gas
Volume of parallelepiped = v cos ! dA dt 
(Note that, at grazing angles, θ ~ π/2, the volume is small) 

# of molecules crossing through dA in dt = ρvcos θdAdt (number density times volume) 

#molecules

dAdt
= ρvcos ! =FLUX. 

We must integrate this expression over the distribution of velocities of the gas to obtain
the average flux J. The Maxwell-Boltzmann distribution (from Lecture #28) is 
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Thus, for the average flux: 

The result is: 
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Note : This result could have been obtained in an alternative way. Consider a volume of 
gas behind the hole that contains ρdV molecules. Then J simply is: 

particles exiting through the hole are the same as the velocity distribution of particles 

hitting the hole. As a result the angular distribution and speed distribution of flux 

Volume 

dV=v zdt

Only the molecules with vz > 0

 can exit the hole.

J = ! dvx"#
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Angular Distribution of Flux (or Effusing Molecules) The velocity distribution of 

j(v,!,") leaving the hole is. 
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The angular distribution of the flux is 

cos !

jangle(")d" = dv
0

#

$ j v,!,%( ) =
&v

4'
cos!d"

0 < ! <
'
2

,      0 < % < 2'

Effusion is an important mechanism for creating molecular beams that have practical use 

(for example in molecular beam epitaxy used in the manufacture of electronic devices) 

and for studying collisions and gas phase chemical reactions. 

One important application is time of flight verification of the Maxwell Boltzmann 

distribution (1955!). The experiment is described in the figure below. Puffs of gas are 

released by opening the shutter. The gas spreads as a result of the spread in speed. 

{velocity distributions can also be inferred from Doppler shift measurements on spectral 

lines}. 

q(t) is the number of molecules that

hits the detector between t and t + dt

time

L = vt

gas

source
shutter

detector

t1 t2 t3

There is a relation between the distribution of arrival times q(t) and the distribution of
speeds h(v): 

. q(t)dt = h(v)dv
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Dynamics determines the exact relation between distance, speed, and time L=vt. Using 
the Dirac delta function to set this relation gives: 

dvh(v)! v" L
t
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Thus measurement of q(t) allows us to infer the functional form of h according to: 

h
L

t

!
"
#

$
%
& = q(t)

dt

dv
= q(t)

t2

L
. 

The flux is obtained by multiplying the amplitude in the arrival time distribution at the
corresponding time t with a factor t2/L. The flux of molecules with large v arrive at the 
detector early and have not spread out in arrival times as much as the later arriving ones. 

Molecular Collisions 

Goal: To calculate collision frequency between pairs of molecules in a gas. We begin by 
defining terms. 

Z = average number of collisions of a single particle per unit time. 

Collision event occurs when centers of 2 
molecules approach within distance d. 

Distance d is the hard sphere diameter 

Collision cross section ! "d
2 =area of circle of 

radius d (surrounding particle 1), if the center of
particle 2 enters (or touches) this circle, a collision 
occurs. 

A collision occurs when the relative velocity permits an encounter between two particles. 
The relative velocity is defined as: 
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In a time dt, a collision volume dV is swept out by a particle. This volume is: 
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The number of encounters in time dt at relative velocity vr is ρdV. The number of 
encounters per unit time is 

 

# of encounters/time=!
dV

dt
= "d

2!
!
v

r    
  . 

The collision frequency is the average of this quantity: 
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, the average of the relative velocity, is 
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In this expression, we have assumed that the velocity distributions for the two molecules 

are independent of each other; this is true. But, at high density, intermolecular 

interactions will influence the spatial arrangement of the colliding pairs and this effect is 

not taken into account in the above expression. Thus, the average we are calculating is 

only valid for dilute gas conditions. 

The two distribution functions have the form: 
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Thus the integral to be done is: 
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In order to do the integrals we must change variables from 
 

!
U

 

!
v

1
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!
v

2
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center of mass velocity : 
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Solving for the particle velocities gives: 
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A bit of algebra shows that the kinetic energy term is: 
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To proceed we need the Jacobian of the transformation for the change in variables: 
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The Jacobian of the transformation is happily equal to unity. 

The transformed integral becomes: 
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We have no interest in the center of mass variables and can immediately integrate over 
these variables to obtain: 
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Note that the Maxwell-Boltzmann distribution for the relative velocity is of the same 

form as the Maxwell-Boltzmann distribution for a single particle with replacement of the 

particle mass by the reduced mass for the colliding pair. 

revised 4/22/08 5:38 PM 



5.62 Spring 2008 Lecture #29 Page 7 

In spherical coordinates the average is: 
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and we obtain the final result: 
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times (i.e. slightly larger than) the average speed of one of the particles. 
v
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One 
certainly expects that 
2

should be between . 

particle average collision frequency, but divided by a factor of 2 to avoid double 

counting. Thus the average total collision frequency per unit volume is: 

The average collision frequency for one particle is 
    

  Z=!d
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 = 2!d
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in a gas of like particles. The total collision frequency ZTOT will be N times the one 

Z
TOT

V
=

2

2
!2"d2v . 

Since collision theory is based on collisions, the average total collision frequency per unit
volume is a key quantity. 
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Macroscopic Reaction Rates


From Microscopic Properties


Part I.

Reaction rates and their corresponding rate constants are macroscopic properties

determined by the microscopic properties of the individual particles that undergo 
reaction. Goal is to develop a theory to calculate rate constants from the molecular level 
properties of the reacting particles. 

COLLISION THEORY 

Consider A + B → C 

Upper limit to reaction rate d[C]/dt is the total collision frequency. 

d[C]
dt = k [A] [B] 

V
Z 

= π d 
AB

2 8kT
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Can we describe the rate constant simply as a hard sphere collision cross section times 
the average speed? 

k = πd 
AB

2 8kT

!µ
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1/2 = πdAB 

2 –c –c = –c rel 

But !dAB
2

� ≡collision (as opposed to reactive) cross section! Not every collision results 
in a reaction. Many details are missing, e.g. do the colliding molecules have enough 
energy to react? 

1. We want an expression for 

… reaction cross section σR


Expect σR to have an energy dependence. Simplest assumption:


σR = 0 if E < Eo and σR = !dAB
2

if E ≥ E0 

where E ≡ relative energy between colliding particles 
E0 ≡ critical energy needed to get over barrier. 
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But this assumption is obviously deficient because molecules collide with different 
impact parameters, b. 

IMPACT PARAMETER ≡ b ≡ distance between relative velocity vector and another line 
parallel to crel and going thru center of target atom. 

We have the “intuition” that molecules that collide head-on will be more effective at 
reacting than molecules that experience glancing collisions (b � d) even if the relative 
collision energy is the same. Propose that the critical energy, E0, 
must be along the “line of centers”. The line of centers is the direction of the line through 
the two atom centers at the instant of impact. 

Calculate line-of-centers energy: 

φ ≡ angle between and the line 

•

•

φ dab 

b 

crel 

c
~rel

of centers 

≡ relative velocity vector c
~rel

crel cosφ≡ velocity component along line of centers 

1 2 
2 µ crel cos2 φ≡ translational energy component along the line of centers 
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This function relates the component of the relative translational energy that provides the
critical energy along the line of centers to the impact parameter of the collision. 

For each E, there is some b, call it b0, such that the line of centers energy is sufficient for 
reaction: 
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at least E0 along line of centers 
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For each E, all collisions with b ≤ b0 are effective because for these impact parameters 
the line of centers energy is > E0 

So σR(E) = π b	 The reactive cross-section is a function of the relative 
translational energy because it includes all values of b ≤ b0
and b0 is explicitly dependent on E. 
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Calculate k by averaging over relative velocities (energies).
2.
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But, we no longer want to multiply by the average relative velocity because σR is now 
dependent on the relative energy (velocity). Want to multiply σR by the relative velocity 
of the specific collision and then want to average over all possible relative energies. 

–k = σR c = ∫ σR c f(c) dc 
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! " $ COLLISION THEORY
RATE CONSTANT 

fraction of collisions having
necessary component of energy
along line of centers E0 

Collision theory result looks very much like empirical Arrhenius expression 
(k = A e–Ea/kT) except that the collision theory preexponential factor has a T1/2 
dependence 
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k = BTm e–E0/kT where m =1/2 

Most experimental measurements of k do not show a T dependent pre–exponential factor.
This is because measurements of k are made over too small a temperature range to see the 
weak T1/2 dependence of the pre–exponential factor in the presence of the much stronger 
T dependence of the exponential term. This pre-exponential T1/2 dependence would show 
up as non-linearity in plot of lnk vs. 1/T. 

RELATIONSHIP BETWEEN E0 (critical line of centers energy) and Ea, 
EMPIRICAL ARRHENIUS ENERGY 

k = A e–Ea/kT 

Ead ln k 
dT = d(lnAEa / kT)

dT
= kT2 

kCT = 8kT

!m
"
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πdAB e–E0/kT 
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2

Now we require that 

d ln k d ln kCT 
dT = dT 

Thus 
kT

Ea = 2 + E0 

Ea must be larger than E0. WHY? 

FURTHER ANALYZE COLLISION THEORY RATE CONSTANT: 

kCT ∝ ⌡⌠ ⎝
⎛1 – 

E
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R relative energies 
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CALCULATE VALUES FOR


kCT = 8kT

!µ

"
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1/2 2 8kT
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#

$

%
&

1/2 2 
e1/2 e–Ea/kTπdAB e–E0/kT = πdAB 

Get E0 from experimental Ea since E0 = Ea – kT/2 

2
Get πdAB from transport data 

COMPARE TO EXPERIMENT 

ln kCT ln k 
REACTION CALCULATED OBSERVED 

CH3 + CH3 → C2H6 10.6 10.5 

CF3 + CF3→� C2F6 10.3 10.4 

H + CCl4 → HCl + CCl3 0.83 –4.4 

Cl + H2 → HCl + H –1.4 –4.7 

Conclusions: works well for simple recombination steps where the Ea is small or non-
existent and where there is little steric hindrance. 

does not work well for reactions with steric hindrance 
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— E0 dependence may not be isotropic 

— ignores effects of reactant vibrational and rotational energy in
overcoming barrier. 
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Part II. 

A "good" theory must take into account the internal degrees of freedom of the
reactants and their angle of approach. An approach known as transition state theory =
activated complex theory = absolute rate theory does so in an approximate way. 

POTENTIAL ENERGY SURFACE 

A correct theory must consider the internal structure of molecules and the forces
acting on atoms in the molecules because bonds are being broken and formed during a
reaction. During a reactive collision, the force on an atom depends on both
intramolecular forces (forces between atoms in a molecule) and intermolecular forces
(forces between molecules). Must treat the two colliding reactants as a single quantum 
mechanical system. This system exists only during collision process. 

The system's potential energy is calculated the same way the potential energy for
nuclear vibrational motion is calculated. Within the Born-Oppenheimer approximation, 
solve 

Hel Ψel = Eel Ψel at fixed nuclear configuration. 

The resulting Eel is the potential energy at that nuclear configuration. Systematically vary 
the nuclear configuration (grid of points) to get potential energy as a function of nuclear
coordinates. 

Problem:	 too many nuclear coordinates! Can't plot potential energy as a
function of more than 2 coordinates. A plot of potential energy 
versus 2 coordinates is a 3-D plot where the potential energy is a
SURFACE. Potential energy for more than 2 coordinates is still
called a surface even though there are more than 2 coordinates. 
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describes how potential energy changes 
with the positions of the nuclei 

EXAMPLE: H2 + F 

For collinear approach, there are 2 independent variables 

! HF + H 

RHF and RHH on which the potential depends. 
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The potential energy of this system can be
represented as a 3-D surface as a function of RHF 
and RHH. The 3-D surface can be represented as a 2-
D contour potential energy surface. 

HF + H 

B 

F + H2 
x 

saddle point 

A 
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Lines on a contour map represent EQUIPOTENTIALS. Valleys correspond to 
initial and final states. 

Section 
A-A 

Section B-B 
(cut through 
V(Q) along B) 

REACTION COORDINATE FOR F + H2 

1.4 

H2F[ ]
‡ 

34.7 

REACTION COORDINATE — minimum energy path along deepest part of 
potential energy surface 
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— note reaction coordinate corresponds to an antisymmetric H2F vibration 

TRANSITION STATE — transitory [H2F]‡ complex with a definite structure 
— dissociates within one half antisymmetric vibration. 

TRANSITION STATE THEORY 

An approach to calculating a rate constant by reducing the dynamics of the
reaction to an equilibrium between the reactants and the transition state along the reaction 
coordinate. 

A + B ↔ [AB]‡ → PRODUCTS 

Uses statistical mechanics to treat the equilibrium. The reaction coordinate is the 1-D 
antisymmetric vibration of the transition state. 
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