MIT OpenCourseWare
http://ocw.mit.edu

5.62 Physical Chemistry II

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.62 Lecture \#2: E, A, and S: Macroscopic Properties from Microscopic $\left\{\boldsymbol{P}_{i}\right\}$ Probabilities

Problem:	How do we calculate a macroscopic property, which is constant in time, from a microscopic property that fluctuates in time?

Example: Pressure, which is a macroscopic property that arises from the microscopic impulses of each molecule impacting the vessel's walls. The positions and velocities of each molecule change on a 10^{-13} s time scale (the duration of a collision)!

Possible Solution: TIME AVERAGE the microscopic variable
$\mathrm{f}_{\text {obs }}$ is the observed macroscopic property
$\mathrm{f}\left(q^{3 \mathrm{~N}}, \mathrm{p}^{3 \mathrm{~N}}\right)$ is the instantaneous value of the sum over all microscopic contributions to the macroscopic property
$\mathrm{f}_{\text {obs }}=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{0}^{\tau} \mathrm{f}\left({\underset{\sim}{q}}^{3 \mathrm{~N}},{\underset{\sim}{c}}^{3 \mathrm{~N}}\right) \mathrm{d} \tau^{\prime}$ this is how a classical mechanical time average is defined
But this calculation is impossible because it requires knowledge of the time dependence of a very large number, N, of q_{i}, p_{i}.

Instead, we make use of ENSEMBLE THEORY, developed by J. Willard Gibbs (18391903) (founder of Stat. Mech.)

ENSEMBLE \equiv A COLLECTION OF ALL "POSSIBLE" STATES OF AN ASSEMBLY system (e.g. a molecule) \rightarrow assembly of systems \rightarrow ensemble

In thermodynamics, the word "system" is used to specify the macroscopic object under construction.

Example:

(1) Quantum - assembly consisting of 2 particles only

state	$n_{1 x}$	$n_{1 y}$	$n_{1 z}$	$n_{2 x}$	$n_{2 y}$	$n_{2 z}$

Constant E ensemble	α	2	1	1	1	1	1
with $\mathrm{E}=9 \varepsilon_{0}$	β	1	2	1	1	1	1
$\mathrm{E}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \varepsilon_{\mathrm{i}}$	γ	1	1	2	1	1	1
$\varepsilon_{\mathrm{i}}=\frac{\mathrm{h}^{2}}{8 \mathrm{~m}_{\mathrm{i}} \mathrm{a}^{2}}\left[\mathrm{n}_{\mathrm{ix}}^{2}+\mathrm{n}_{\mathrm{iy}}^{2}+\mathrm{n}_{\mathrm{i} \mathrm{i}}^{2}\right]$	δ	1	1	1	2	1	1
	η	1	1	1	1	2	1
	1	1	1	1	1	2	

$\varepsilon_{0}=\frac{h^{2}}{8 \mathrm{~m}_{\mathrm{i}} \mathrm{a}^{2}}$
For a 2 particle assembly there are only 6 ways $\mathrm{E}=9 \varepsilon_{0}$ can be achieved.
(2) Classical - 1 particle

$$
\begin{gathered}
\text { In general } \quad \mathrm{E}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \varepsilon_{\mathrm{i}} \\
\varepsilon_{\mathrm{i}}=\frac{\mathrm{p}_{\mathrm{ix}}^{2}+\mathrm{p}_{\mathrm{iy}}^{2}+\mathrm{p}_{\mathrm{iz}}^{2}}{2 \mathrm{~m}} \\
\text { In this case } \quad \mathrm{E}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}}=\text { constant }
\end{gathered}
$$

For a 2 particle assembly there are an infinite number of ways $\mathrm{E}=9 \varepsilon_{0}$ can be achieved.
Note that the quantum ensemble is a set of discrete states, whereas the classical ensemble is a set of infinitely many states described by continuous variables.

| ENSEMBLE THEORY: SOMEHOW, WE CAN KNOW ALL POSSIBLE STATES |
| :--- | :--- |
| OF AN ASSEMBLY WITHOUT WATCHING IN REAL TIME WHAT STATES THE |
| ASSEMBLY VISITS. SO, INSTEAD OF THE INFEASIBLE TIME AVERAGE, WE |
| COMPUTE AN AVERAGE OVER ALL FEASIBLE STATES OF AN ASSEMBLY. |

It is frequently feasible to list (enumerate) the states possible for the assembly without "watching in real time". This is where combinatorics and statistics enter.

A FUNDAMENTAL POSTULATE OF STATISTICAL MECHANICS

THE ERGODIC HYPOTHESIS

TIME AVERAGE \equiv ENSEMBLE AVERAGE
(actually it is also an average over cells in phase space, each of volume $h^{3 N}$ where N is the number of particles)

ENSEMBLE AVERAGE

Discrete case - Quantum
$f_{j} \equiv$ a microscopic property of $j^{\text {th }}$ distinguishable state of assembly
sum over distinguishable assembly states in ensemble
$\mathrm{P}_{\mathrm{j}} \equiv$ probability that assembly is in state j.
so macroscopic energy $\overline{\mathrm{E}}=\sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}} \mathrm{E}_{\mathrm{j}}=$ ensemble average energy
Continuous case - classical

$$
\overline{\mathrm{f}}=\int \cdots \int \mathrm{P}\left({\underset{\sim}{q}}^{3 \mathrm{~N}},{\underset{\sim}{p}}^{3 \mathrm{~N}}\right) \mathrm{f}\left({\underset{\sim}{q}}^{3 \mathrm{~N}},{\underset{\sim}{p}}^{3 \mathrm{~N}}\right) \mathrm{dq}_{\sim}^{3 N} \mathrm{dp}_{\sim}^{3 N}
$$

where $\mathrm{P}\left({\underset{\sim}{q}}^{3 \mathrm{~N}},{\underset{\sim}{p}}^{3 \mathrm{~N}}\right) \mathrm{dq}_{\sim}^{3 \mathrm{~N}} \mathrm{dp}_{\sim}^{3 \mathrm{~N}} \equiv$ prob. of finding the assembly in the phase space volume element $\mathrm{dq}_{\sim}^{3 \mathrm{~N}} \mathrm{dp}_{\sim}^{3 N}$ centered at ${\underset{\sim}{q}}^{3 \mathrm{~N}},{\underset{\sim}{p}}^{3 \mathrm{~N}}$.

NOTE:To calculate an ensemble average, you need values for $\mathrm{P}_{\mathrm{j}}\left(\right.$ or $\left.\mathrm{P}\left(\mathbf{q}^{3 \mathrm{~N}}, \mathbf{p}^{3 \mathrm{~N}}\right)\right)$
PROBLEM: How do we determine P_{j} ?
SOLUTION: Minimize the Helmholtz free energy, $\mathrm{A}=\overline{\mathrm{E}}-\mathrm{TS}$, holding the natural variables of $\mathrm{A},(\mathrm{N}, \mathrm{T}$, and V$)$, constant.

DETERMINATION OF P_{j}

Our ensemble is a

CANONICAL ENSEMBLE \equiv ensemble subject to constraints that $\mathrm{N}, \mathrm{V}, \mathrm{T}$ are constant.
A closed, thermodynamically stable system.
Condition for thermodynamic stability (equilibrium) for $\mathrm{N}, \mathrm{V}, \mathrm{T}$ constant is

$$
\text { AN,V,T } \equiv \text { MINIMUM }
$$

The states of the assembly present in the ensemble, as given by $\left\{\mathrm{P}_{\mathrm{j}}\right\}$, must minimize A .
Must write A in terms of $\left\{\mathrm{P}_{\mathrm{j}}\right\}$.

$$
\mathrm{A}=\overline{\mathrm{E}}-\mathrm{TS} \quad \text { and } \quad \overline{\mathrm{E}}=\sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}} \mathrm{E}_{\mathrm{j}}=\sum_{\mathrm{j}}\left(\Gamma_{\mathrm{j}} / \Gamma\right) \mathrm{E}_{\mathrm{j}}
$$

where Γ_{j} is the number of replicas of the j-th assembly in the ensemble, Γ is the total number of assemblies in the ensemble
$\frac{\Gamma_{\mathrm{j}}}{\Gamma}$ is the probability of j -th assembly in the ensemble

$$
\text { so } A=\sum_{j} P_{j} E_{j}-T S
$$

Now connect S and $\{\mathrm{P} \mathrm{j}\} \ldots$
An isolated system at equilibrium is one of maximum entropy, S-2 ${ }^{\text {nd }}$ Law. If the system is perturbed, it will relax to maximum entropy, a macro property. On a microscopic scale, it relaxes by going from a less probable state to a more probable state. So, there must be a connection between entropy (a macro property) and P_{j} (a micro property). That connection is assumed to be...

$$
\mathrm{S}=-\mathrm{k} \sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}} \ln \mathrm{P}_{\mathrm{j}} \quad \begin{aligned}
& \text { A CRUCIAL } \\
& \text { ASSUMPTION! }
\end{aligned}
$$

Boltzmann wrote this down in a slightly different form. No derivation. Only
plausibility arguments. It is an assumption on which statistical mechanics is built. It works!!!

So now, $\quad \mathrm{A}=\overline{\mathrm{E}}-\mathrm{TS}$

$$
\begin{aligned}
& A=\sum_{j} P_{j} E_{j}+k T \sum_{j} P_{j} \ln P_{j} \\
& A=\sum_{j} P_{j}\left(E_{j}+k T \ln P_{j}\right)
\end{aligned}
$$

Finding those P_{j} 's that make A a minimum ...

$$
\begin{aligned}
& \begin{array}{l}
\text { Replace } P_{j} \text { by } P_{j}+\delta P_{j} \text {, then } A \rightarrow A+\delta A . \text { The } \\
\text { "correct" set of }\left\{P_{j} ' s\right\} \text { gives } \delta A=0 \text {, which } \\
\text { corresponds to the minimum of } A
\end{array} \\
& \delta A=\delta\left[\sum_{j} P_{j}\left(E_{j}+k T \ln P_{j}\right] \quad(N, V, T \text { constant })\right. \\
& =\sum_{j}\left[E_{j} \delta P_{j}+P_{j} \delta E_{j}+k T\left(\ln P_{j}\right) \delta P_{j}+k T P_{j} \frac{1}{P_{j}} \delta P_{j}\right] \quad\left(\delta E_{j}=0\right) \\
& =\sum_{j} \delta P_{j}\left[E_{j}+k T\left(\ln P_{j}+1\right)\right] \text { set to } 0 \text { for extremum }
\end{aligned}
$$

Introduce Constraint

$$
\sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}}=1=\sum_{\mathrm{j}}\left(\mathrm{P}_{\mathrm{j}}+\delta \mathrm{P}_{\mathrm{j}}\right)
$$

This implies

$$
\sum_{\mathrm{j}} \delta \mathrm{P}_{\mathrm{j}}=0
$$

$$
\text { or } \delta \mathrm{P}_{\mathrm{j}=1}=-\sum_{\mathrm{j}=2}^{\mathrm{N}} \delta \mathrm{P}_{\mathrm{j}} \quad \text { the trick! }
$$

Remove the first term from the summation:
Now $\quad \delta A=\delta P_{1}\left[E_{1}+k T\left(\ln P_{1}+1\right)\right]+\sum_{j=2}^{N} \delta P_{j}\left[E_{j}+k T\left(\ln P_{j}+1\right)\right]$
employ the trick

$$
\begin{aligned}
& \delta \mathrm{A}=-\sum_{\mathrm{j}=2}^{\mathrm{N}} \delta \mathrm{P}_{\mathrm{j}}\left[\mathrm{E}_{1}+\mathrm{kT}\left(\ln \mathrm{P}_{1}+1\right)\right]+\sum_{\mathrm{j}=2}^{\mathrm{N}} \delta \mathrm{P}_{\mathrm{j}}\left[\mathrm{E}_{\mathrm{j}}+\mathrm{kT}\left(\ln \mathrm{P}_{\mathrm{j}}+1\right)\right] \\
& \delta \mathrm{A}=+\sum_{\mathrm{j}=2}^{\mathrm{N}} \delta \mathrm{P}_{\mathrm{j}}\left[\left(\mathrm{E}_{\mathrm{j}}-\mathrm{E}_{1}\right)+\mathrm{kT}\left(\ln \mathrm{P}_{\mathrm{j}}-\ln \mathrm{P}_{1}\right)\right]=0
\end{aligned}
$$

$\delta \mathrm{P}_{\mathrm{j}}$'s are completely independent of each other for arbitrary $\delta \mathrm{P}_{\mathrm{j}} ; \mathrm{j}=2,3 \ldots$, thus each coefficient of each $\delta \mathrm{P}_{\mathrm{j}}$ must separately be zero.

$$
\begin{array}{ll}
\therefore \quad & E_{j}-E_{1}+k T\left(\ln P_{j}-\ln P_{1}\right)=0 \\
& \frac{E_{j}-E_{1}}{k T}=\ln \left(P_{1} / P_{j}\right) \\
& e^{\frac{E_{j}-E_{1}}{k T}}=P_{1} / P_{j} \\
\therefore \quad & P_{j}=P_{1} e^{E_{1} / k T} e^{-E_{j} / k T}
\end{array}
$$

Need to normalize $\mathrm{P}_{\mathrm{j}} \quad \sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}}=1$

$$
\sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}}=\mathrm{P}_{\mathrm{i}} \mathrm{e}^{\mathrm{E}_{\mathrm{I}} / \mathrm{kT}} \sum_{\mathrm{j}} \mathrm{e}^{-\mathrm{E}_{\mathrm{j}} / k \mathrm{~T}}=1
$$

Solve for P_{1}

$$
P_{1}=\frac{1}{e^{E_{1} / k T} \sum_{j} e^{-E_{j} / k T}}
$$

Use $*$ equation: $\quad P_{1}=P_{j} e^{E_{j} / k T} e^{-E_{1} / k T}$

$$
\therefore \quad P_{j}=\frac{1}{e^{E_{1} / k T} \sum_{m} e^{-E_{m} / k T}}\left[\mathrm{e}^{\mathrm{E}_{1} / k T} e^{-\mathrm{E}_{\mathrm{j}} / k T}\right]
$$

$$
\mathrm{P}_{\mathrm{j}}=\frac{\mathrm{e}^{-\mathrm{E}_{\mathrm{j}} / \mathrm{kT}}}{\sum_{\mathrm{m}} \mathrm{e}^{-\mathrm{E}_{\mathrm{m}} / \mathrm{kT}}} \quad \begin{aligned}
& \text { Canonical } \\
& \text { Distribution } \\
& \text { Function! }
\end{aligned}
$$

Probability of finding an assembly with energy E_{j} among all of the assemblies in the ensemble.

These are the probabilities of states of an assembly that make the ensemble thermodynamically stable

$$
\begin{aligned}
& \Rightarrow \text { minimized } \mathrm{A} \\
& \Rightarrow \text { needed probalistic assumption for } \mathrm{S}=-\mathrm{k} \sum_{\mathrm{j}} \mathrm{P}_{\mathrm{j}} \ln \mathrm{P}_{\mathrm{j}}
\end{aligned}
$$

Since we now know P_{j}, we can calculate ensemble averages. Thus we can calculate macroscopic properties from microscopic properties using ensemble average instead of time average.

