Quiz 31

1. The sp² configuration gives rise to ²D, ²P, ⁴P, and ²S L–S states. The degeneracy of an L–S state is (2S + 1)(2L + 1). There are six np spin-orbitals and two ns spin-orbitals. The Pauli principle prohibits putting two electrons into the same spin-orbital.

- A. What is the total degeneracy of the sp² configuration?
- B. What is the sum of the degeneracies of the L–S states that arise from sp²?
- C. What is the maximum possible value of M_L among all of the L–S states of sp^2 ?
- D. Write one of the two 3-electron Slater determinant that corresponds to maximum M_L .
- E. The maximum M_S value is 3/2. What is the maximum M_L value compatible with $M_S = 3/2$? Write the unique Slater determinant that corresponds to this M_L , M_S pair.
- F. $\mathbf{L}^2 = \frac{1}{2} (\mathbf{L}_+ \mathbf{L}_- + \mathbf{L}_- \mathbf{L}_+) + \mathbf{L}_z^2$.

Is $||s0\alpha p1\alpha p1\beta||$ an eigenstate of L²? If so, what is its eigenvalue?

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.