5.73
 Quiz 31

1. The sp^{2} configuration gives rise to ${ }^{2} \mathrm{D},{ }^{2} \mathrm{P},{ }^{4} \mathrm{P}$, and ${ }^{2} \mathrm{~S}$ L-S states. The degeneracy of an $\mathrm{L}-\mathrm{S}$ state is $(2 \mathrm{~S}+1)(2 \mathrm{~L}+1)$. There are six np spin-orbitals and two ns spin-orbitals. The Pauli principle prohibits putting two electrons into the same spin-orbital.
A. What is the total degeneracy of the sp^{2} configuration?
B. What is the sum of the degeneracies of the L-S states that arise from sp^{2} ?
C. What is the maximum possible value of M_{L} among all of the $\mathrm{L}-\mathrm{S}$ states of sp^{2} ?
D. Write one of the two 3-electron Slater determinant that corresponds to maximum M_{L}.
E. The maximum M_{S} value is $3 / 2$. What is the maximum M_{L} value compatible with $\mathrm{M}_{\mathrm{S}}=3 / 2$? Write the unique Slater determinant that corresponds to this $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ pair.
F. $\quad \mathbf{L}^{2}=\frac{1}{2}\left(\mathbf{L}_{+} \mathbf{L}_{-}+\mathbf{L}_{-} \mathbf{L}_{+}\right)+\mathbf{L}_{z}^{2}$.

Is $\|s 0 \alpha p 1 \alpha p 1 \beta\|$ an eigenstate of \mathbf{L}^{2} ? If so, what is its eigenvalue?

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

