5.73

Quiz 25 ANSWERS

1.

$$
\begin{aligned}
& \mathbf{L} \cdot \mathbf{S}=\frac{1}{2}\left[\mathbf{J}^{2}-\mathbf{L}^{2}-\mathbf{S}^{2}\right] \\
& \mathbf{L} \cdot \mathbf{S}=\mathbf{L}_{z} \mathbf{S}_{z}+\frac{1}{2}\left[\mathbf{L}_{+} \mathbf{S}_{-}+\mathbf{L}_{-} \mathbf{S}_{+}\right] \\
& \mathbf{H}^{\text {so }}=\zeta \mathbf{L} \cdot \mathbf{S} \\
& \mathbf{H}^{\text {zeeman }}=-\gamma \boldsymbol{B}_{z}\left(\mathbf{L}_{z}+2 \mathbf{S}_{z}\right) \\
& \hline
\end{aligned}
$$

A. For a ${ }^{2} \mathrm{~F}_{52}$ state:
(i) What is $\mathbf{S} ? \mathbf{S}=1 / 2$
(ii) What is \mathbf{L} ? $\mathbf{L \equiv 3}$
(iii) What is $\mathbf{J} ? \mathbf{J}=5 / 2$
(iv) Evaluate $\left.\left.\left\langle{ }^{2} F_{5 / 2}, M_{J}\right| \mathbf{H}^{\mathrm{SO}}\right|^{2} F_{5 / 2}, M_{J}\right\rangle$.

$$
\begin{aligned}
& =\frac{1}{2} \zeta\left[\frac{5}{2} \frac{7}{2}-3 \cdot 4-\frac{1}{2} \frac{3}{2}\right] \mathrm{h}^{2} \\
& =\frac{1}{2} \zeta[8-12]=-2 \zeta \mathrm{~h}^{2}
\end{aligned}
$$

(v) Evaluate $\left\langle{ }^{2} F_{7 / 2}, M_{J}=7 / 2 \mid \mathbf{H}^{\text {Zeeman }}{ }^{2} F_{7 / 2}, M_{J}=7 / 2\right\rangle$.

$$
=-\gamma \mathrm{B}_{\mathrm{z}}[3+1]==-4 \gamma \mathrm{~B}_{\mathrm{z}}
$$

$$
\text { because } \left.\left.\right|^{2} \mathrm{~F}_{7 / 2}, \mathrm{M}_{\mathrm{J}}=7 / 2\right\rangle \text { is an extreme state }
$$

$$
\left.=\left.\right|^{2} \mathrm{~F}_{7 / 2}, \mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=1 / 2\right\rangle
$$

B.

Apply $\mathbf{J}^{-}=\mathbf{L}^{-}+\mathbf{S}^{-}$to both sides of $\left.\left|{ }^{2} F_{7 / 2}, M_{J}=7 / 2\right\rangle={ }^{2} F, M_{L}=3, M_{S}=1 / 2\right\rangle$ where the two basis states are the "extreme" states, respectively in the coupled and uncoupled basis sets:

$$
\left.\mathbf{J}^{-}\left|{ }^{2} F_{7 / 2}, M_{J}=7 / 2\right\rangle=\left.\left(\mathbf{L}^{-}+\mathbf{S}^{-}\right)\right|^{2} F, M_{L}=3, M_{S}=1 / 2\right\rangle .
$$

Find the normalized combination of $\left|{ }^{2} F, M_{L}=2, M_{S}=1 / 2\right\rangle$ and

$$
\begin{aligned}
& \left.\left|{ }^{2} F, M_{L}=3, M_{S}=-1 / 2\right\rangle \text { that corresponds to }\left.\right|^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle . \\
& \begin{array}{c}
\left.\left.\left.\left(\mathbf{J}^{-}\left|{ }^{2} F_{7 / 2}, M_{J}=7 / 2\right\rangle=\hbar[7 / 2 \cdot 9 / 2-7 / 2 \cdot 5 / 2]^{-}\right)\right|^{2}\right|^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle \\
\left.=\left.\hbar[7]\right|^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle \\
\left.\quad \times\left.\right|^{2} F_{7 / 2}, M_{L}=2, M_{S}=-1 / 2\right\rangle+\hbar[1 / 2 \cdot 3 / 2-1 / 2(-1 / 2)]^{1 / 2} \\
\left.\quad \times\left.\right|^{2} F_{7 / 2}, M_{L}=3, M_{S}=-1 / 2\right\rangle \\
\left|\begin{array}{l}
\\
\end{array} F_{7 / 2}, M_{J}=5 / 2\right\rangle=\left(\frac{6}{7}\right)^{1 / 2}\left|{ }^{2} F_{7 / 2}, M_{L}=2, M_{S}=1 / 2\right\rangle \\
\quad+\left(\frac{1}{7}\right)^{1 / 2}\left|{ }^{2} F_{7 / 2}, M_{L}=3, M_{S}=-1 / 2\right\rangle
\end{array}
\end{aligned}
$$

C. Verify that $\left.\left.\left.\right|^{2} \mathrm{~F}_{5 / 2}, \mathrm{M}_{\mathrm{J}}=5 / 2\right\rangle=-\left.7^{-1 / 2}\right|^{2} \mathrm{~F}, \mathrm{M}_{\mathrm{L}}=2, \mathrm{M}_{\mathrm{S}}=1 / 2\right\rangle$ $\left.+\left.(6 / 7)^{1 / 2}\right|^{2} \mathrm{~F}, \mathrm{M}_{\mathrm{L}}=3, \mathrm{M}_{\mathrm{S}}=-1 / 2\right\rangle$ is orthogonal to $\left.\left.\right|^{2} F_{7 / 2}, M_{J}=5 / 2\right\rangle$ which you obtained in part B.

$$
\left\langle{ }^{2} F_{7 / 2}, 5 /\left.2\right|^{2} F_{5 / 2}, 5 / 2\right\rangle=-\left(\frac{6}{7}\right)^{1 / 2}\left(\frac{1}{7}\right)^{1 / 2}+\left(\frac{1}{7}\right)^{1 / 2}\left(\frac{6}{7}\right)^{1 / 2}=0
$$

D. Evaluate $\left.\left.\left\langle{ }^{2} F_{5 / 2}, M_{J}=5 / 2\right| \mathbf{H}^{\text {zeeman }}\right|^{2} F_{5 / 2}, M_{J}=5 / 2\right\rangle$.

$$
\begin{array}{r}
\left.-\gamma B_{z}\left\langle{ }^{2} F_{5 / 2}, M_{J}=5 / 2\right| \mathbf{L}_{z}+\left.2 \mathbf{S}_{z}\right|^{2} F_{5 / 2}, M_{J}=5 / 2\right\rangle \\
=-\gamma B_{z}\left[(2+1) \frac{1}{7}+(3-1) \frac{6}{7}\right]=-\hbar \gamma B_{z}\left(\frac{15}{7}\right)
\end{array}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

