Supplement \#2 to Lecture \#27

$\underline{\text { Simplification of hyperfine } \mathbf{H}^{\text {hf }} \text { by Wigner-Eckart Theorem }}$

There can be many angular momenta in an atom that has non-zero L, S, and I, where I is the nuclear spin. The individual angular momenta are

L orbital angular momentum
S electron spin angular momentum
I nuclear spin angular momentum
and the coupled angular momenta are

$$
\begin{array}{ll}
\overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{L}}+\overrightarrow{\mathbf{S}} & \text { total exclusive of nuclear spin } \\
\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{J}}+\overrightarrow{\mathbf{I}} & \text { total angular momentum }
\end{array}
$$

and the laboratory frame projection of $\overrightarrow{\mathbf{F}}$ is

$$
M_{F} .
$$

The coupled basis states are

$$
\left|F J L S I M_{F}\right\rangle
$$

If there are many electrons, we need to define the hyperfine term in the Hamiltonian as a sum over individual electron contributions

$$
\mathbf{H}^{\mathrm{hf}}=\sum_{i}\left(a_{i} \mathbf{s}_{i}+b_{i} \boldsymbol{\ell}_{i}\right) \cdot \mathbf{I} .
$$

A basis set like $\left|F J G L S I M_{F}\right\rangle$ would make life much simpler for evaluating matrix elements $I \cdot S$ and $I \cdot L$, but it is illegal because $\left[\mathbf{G}^{2}, \mathbf{J}^{2}\right] \neq 0$.

$$
\begin{aligned}
\overrightarrow{\mathbf{G}} & =\overrightarrow{\mathbf{I}}+\overrightarrow{\mathbf{S}} \\
\overrightarrow{\mathbf{J}} & =\overrightarrow{\mathbf{L}}+\overrightarrow{\mathbf{S}} \\
\overrightarrow{\mathbf{G}}^{2} & =I^{2}+S^{2}+2 I \cdot S \\
\overrightarrow{\mathbf{J}}^{2} & =L^{2}+S^{2}+2 L \cdot S
\end{aligned}
$$

$$
\begin{aligned}
{\left[\mathbf{G}^{2}, \mathbf{J}^{2}\right]=} & 4[I \cdot S, L \cdot S] \\
{[I \cdot S, L \cdot S]=} & {\left[I_{x} S_{x}+I_{y} S_{y}+I_{z} S_{z}, L_{x} S_{x}+L_{y} S_{y}+L_{z} S_{z}\right] } \\
= & I_{x}\left[S_{x}, S_{y}\right] L_{y}+I_{x}\left[S_{x}, S_{z}\right] L_{z} \\
& +I_{y}\left[S_{y}, S_{x}\right] L_{x}+I_{y}\left[S_{y}, S_{z}\right] L_{z} \\
& +I_{z}\left[S_{z}, S_{x}\right] L_{x}+I_{z}\left[S_{z}, S_{y}\right] L_{y} \\
= & i \hbar\left[I_{x} L_{y} S_{z}-I_{x} L_{z} S_{y}-I_{y} L_{x} S_{z}+I_{y} L_{z} S_{x}+I_{z} L_{x} S_{y}-I_{z} L_{y} S_{x}\right] \\
= & i \hbar I \cdot(L \times S) \neq 0 .
\end{aligned}
$$

We want to replace

$$
\mathbf{H}^{\mathrm{hf}}=\sum_{i}\left(a_{i} \mathbf{s}_{i}+b_{i} \ell_{i}\right) \cdot \mathbf{I}
$$

by

$$
\mathbf{H}^{\mathrm{hf}}=c_{\mathrm{JLS}} \mathbf{J} \cdot \mathbf{I}
$$

and to evaluate c JLLS . To accomplish this we must first go to an uncoupled basis set
$\left|F J L S I M_{F}\right\rangle=\sum_{M_{J}}\left|J L S M_{J}\right\rangle\left|I M_{I}=M_{F}-M_{J}\right\rangle \underbrace{\left\langle J L S M_{J}\right|\left\langle I M_{F}-M_{J} \mid F J L S I M_{F}\right\rangle}_{d_{M_{J}}}$.
Call the vector-coupling coefficient $d_{M_{J}}$ for simplicity (we are not actually going to look up and insert values for this mixing coefficient).

We seek only the diagonal matrix elements of $\mathbf{H}^{\text {hf }}$

$$
\begin{aligned}
& F J L S I M_{F}\left|\mathbf{H}^{\mathrm{hf}}\right| F J L S I M_{F}=\sum_{M_{J}} \sum_{M_{J}^{\prime}} d_{M_{J}} d_{M_{J}^{\prime}} \times \\
& \qquad\left\langle J L S M_{J}\right| \sum_{i}\left(a_{i} \mathbf{s}_{i}+b_{i} \ell_{i}\right)\left|J L S M_{J}^{\prime}\right\rangle\left\langle I M_{F}-M_{J}\right| \mathbf{I}\left|I M_{F}-M_{J}^{\prime}\right\rangle
\end{aligned}
$$

Since $\sum_{i}\left(a_{i} \mathbf{s}_{i}+b_{i} \ell_{i}\right)$ is a vector with respect to \mathbf{J} and we want only diagonal matrix elements with respect to J , L , and S , we can replace the microscopic
operator by the corresponding matrix element of \mathbf{J} times the reduced matrix element

$$
\begin{gathered}
\left\langle J L S M_{J}\right| \sum_{i}\left(a_{i} \mathbf{s}_{i}+b_{i} \ell_{i}\right)\left|J L S M_{J}^{\prime}\right\rangle \\
=\left\langle J L S \sum_{i}\left(a_{i} \mathbf{s}_{i}+b_{i} \ell_{i}\right) \quad J L S\right\rangle \times\left\langle J L S M_{J}\right| \mathbf{J}\left|J L S M_{J}^{\prime}\right\rangle \\
c_{\mathrm{JLS}} \equiv\left\langle J L S \sum_{i}\left(a_{i} \mathbf{s}_{i}+b_{i} \ell_{i}\right) \quad J L S\right\rangle \\
F J L S I M_{F} \mathbf{H}^{\mathrm{hf}} F J L S I M_{F}=\sum_{M_{J}} \sum_{M_{J}^{\prime}} c_{\mathrm{JLS}}\left\langle J L S M_{J}\right| \mathbf{J}\left|J L S M_{J}^{\prime}\right\rangle \cdot \times \\
\left\langle I M_{F}-M_{J}\right| \mathbf{I}\left|I M_{F}-M_{J}^{\prime}\right\rangle
\end{gathered}
$$

but now we can recognize completeness and contract the product of matrix elements to one of $\mathbf{J} \cdot \mathbf{I}$ in the fully coupled basis set

$$
F J L S I M_{F}\left|\mathbf{H}^{\mathrm{hf}}\right| F J L S I M_{F}=c_{J L S}\left\langle F J L S I M_{F}\right| \mathbf{J} \cdot \mathbf{I}\left|F J L S I M_{F}\right\rangle
$$

but

$$
\begin{aligned}
\overrightarrow{\boldsymbol{J}}+\overrightarrow{\boldsymbol{I}} & =\overrightarrow{\boldsymbol{F}} \\
\overrightarrow{\boldsymbol{J}}^{2}+\overrightarrow{\boldsymbol{I}}^{2}+2 \overrightarrow{\boldsymbol{I}} \cdot \overrightarrow{\boldsymbol{J}} & =\overrightarrow{\boldsymbol{F}}^{2} .
\end{aligned}
$$

Thus

$$
F J L S I M_{F}\left|\mathbf{H}^{\mathrm{hf}}\right| F J L S I M_{F}=\frac{\hbar^{2}}{2} c_{J L S}[F(F+1)-J(J+1)-I(I+1)]
$$

Now the problem for the $3 d 4 p$ configuration reduces to expressing the 12 different $c_{J L S}$ constants in terms of single-spin-orbital integrals

$$
\begin{aligned}
\ell \hbar b_{n \ell} & =\langle n \ell \lambda=\ell| b \ell_{z}|n \ell \lambda=\ell\rangle \quad \text { for } 3 \mathrm{~d} \text { and } 4 \mathrm{p} \\
\frac{1}{2} \hbar a_{n \ell} & =\langle n \ell s \alpha| a s_{z}|n \ell s \alpha\rangle .
\end{aligned}
$$

To accomplish this, we start with the extreme states

$$
\begin{aligned}
& \left\langle J=L+S L S M_{J}=L+S\right| \sum_{i}\left(a_{i} \mathbf{s}_{z_{i}}+b_{i} \ell_{z_{i}}\right)|L+S L S L+S\rangle= \\
& c_{J=L+S L S}\left\langle J=L+S L S M_{J}=L+S\right| \mathbf{J}_{z}|L+S L S L+S\rangle
\end{aligned}
$$

λ values
e.g. ${ }^{3} F_{4} M_{J}=4=|3 d 2 \alpha 4 p 1 \alpha\rangle$

$$
c_{431}=\frac{1}{4}\left[a_{3 d} / 2+a_{4 p} / 2+2 b_{3 d}+b_{4 p}\right]
$$

to get the others, use the "sum rule." More on this in lecture \#34. The basic idea is that the trace of a matrix is representation-invariant and the reduced matrix elements are independent of projection quantum numbers.

$$
\begin{aligned}
\mathbf{J}_{-}{ }^{3} F_{4} M_{J}=4 & =\sum_{i}\left(\ell_{-}+s_{-i}\right)|3 d 2 \alpha 4 p 1 \alpha\rangle \\
\hbar[20-12]^{1 / 2}{ }^{3} F_{4} 3 & =\hbar\left\{[6-2]^{1 / 2}|3 d 1 \alpha 4 p 1 \alpha\rangle+[2-0]^{1 / 2}|3 d 2 \alpha 4 p 0 \alpha\rangle\right. \\
& +|3 d 2 \beta 4 p 1 \alpha\rangle+|3 d 2 \alpha 4 p 1 \beta\rangle\} \\
\left|{ }^{3} F_{4} 3\right\rangle & =2^{-1 / 2}|3 d 1 \alpha 4 p 1 \alpha\rangle+\frac{1}{2}|3 d 2 \alpha 4 p 0 \alpha\rangle \\
& +8^{-1 / 2}|3 d 2 \beta 4 p 1 \alpha\rangle+8^{-1 / 2}|3 d 2 \alpha 4 p 1 \beta\rangle \\
3 c_{431}=\frac{1}{2}\left[a_{3 d} / 2+a_{4 p} / 2+b_{3 d}+b_{4 p}\right] & +\frac{1}{4}\left[a_{3 d} / 2+a_{4 p} / 2+2 b_{3 d}\right] \\
+\frac{1}{8}\left[-a_{3 d} / 2+a_{4 p} / 2+2 b_{3 d}+1 b_{4 p}\right] & +\frac{1}{8}\left[a_{3 d} / 2-a_{4 p} / 2+2 b_{3 d}+b_{4 p}\right]
\end{aligned}
$$

$$
c_{431}=\frac{1}{8} a_{3 d}+\frac{1}{8} a_{4 p}+\frac{1}{2} b_{3 d}+\frac{1}{4} b_{4 p} \quad \text { confirmed as expected }
$$

$$
\begin{aligned}
& \left\langle 4314 \sum_{i}\left(a_{i} \mathbf{s}_{z_{i}}+b_{i} \ell_{z_{i}}\right) 4314\right\rangle=c_{431} \hbar 4 \\
& =\hbar\left[a_{3 d} / 2+a_{4 p} / 2+2 b_{3 d}+b_{4 p}\right]
\end{aligned}
$$

$$
\begin{aligned}
{ }^{1} F_{3} 3= & 2^{1 / 2}[|3 d 2 \alpha 4 p 1 \beta\rangle-|3 d 2 \beta 4 p 1 \alpha\rangle] \\
3 c_{330}= & \frac{1}{2}\left[a_{3 d} / 2-a_{4 p} / 2+2 b_{3 d}+b_{4 p}\right] \\
+ & \frac{1}{2}\left[-a_{3 d} / 2+a_{4 p} / 2+2 b_{3 d}+b_{4 p}\right] \\
& c_{330}=\frac{2}{3} b_{3 d}+\frac{1}{3} b_{4 p}
\end{aligned}
$$

The $J=3, M_{J}=3$ box contains entries from

$$
\begin{aligned}
& \quad{ }^{3} F_{4} 3,{ }^{3} F_{3} 3,{ }^{1} F_{3} 3, \text { and }{ }^{3} D_{3} 3 \\
& 3 c_{431}+3 c_{331}+3 c_{330}+3 c_{321} \\
& =\langle 3 d 1 \alpha 4 p 1 \alpha\rangle+\langle 3 d 2 \alpha 4 p 0 \alpha\rangle+\langle 3 d 2 \beta 4 p 1 \alpha\rangle+\langle 3 d 2 \alpha 4 p 1 \beta\rangle \\
& =a_{3 d} / 2+a_{3 d} / 2-a_{3 d} / 2+a_{3 d} / 2+a_{4 p} / 2+a_{4 p} / 2+a_{4 p} / 2-a_{4 p} / 2 \\
& +b_{3 d}+b_{4 p}+2 b_{3 d}+2 b_{3 d}+b_{4 p}+2 b_{3 d}+b_{4 p} \\
& =a_{3 d}+a_{4 p}+7 b_{3 d}+3 b_{4 p}
\end{aligned}
$$

We know c_{431} and c_{330}. Need to do a bit of algebra to get c_{331} and c_{321}.

$$
\begin{gathered}
{ }^{3} D_{3} 3={ }^{3} D M_{L}=2 M_{S}=1=-\left(\frac{1}{3}\right)^{1 / 2}|3 d 1 \alpha 4 p 1 \alpha\rangle+\left(\frac{2}{3}\right)^{1 / 2}|3 d 2 \alpha 4 p 0 \alpha\rangle \\
3 c_{321}=\frac{1}{3}\left[a_{3 d} / 2+a_{4 p} / 2+b_{3 d}+b_{4 p}\right] \\
+\frac{2}{3}\left[a_{3 d} / 2+a_{4 p} / 2+2 b_{3 d}\right] \\
c_{321}=\frac{1}{6} a_{3 d}+\frac{1}{6} a_{4 p}+\frac{5}{9} b_{3 d}+\frac{1}{9} b_{4 p} \\
\therefore c_{331}=\frac{1}{24} a_{3 d}+\frac{1}{24} a_{4 p}+\frac{11}{18} b_{3 d}+\frac{11}{36} b_{4 p} \\
\text { (steps omitted) }
\end{gathered}
$$

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

