Lecture #4: Stationary Phase and Gaussian Wavepackets

Last time:

tdSE → motion, motion requires non-sharp E phase velocity began Gaussian Wavepacket

goal: $\langle x \rangle$, Δx , $\langle p \rangle = \hbar \langle k \rangle$, $\Delta p = \hbar \Delta k$ by construction or inspection

 $\Psi(x,t)$ is a complex function of real variables. Difficult to visualize.

What are we trying to do here?

Techniques for solving series of increasingly complex problems. Illustrate philosophical points along the way toward solutions of problems.

free particle So far: infinite well δ-function

very artificial

- * nothing particle-like * nothing molecule-like

* no spectra

Minimum Uncertainty (Gaussian) Wavepacket -- QM version of particle. We are going to construct a $\Psi(x,t)$ for which $|\Psi(x,t)|^2$ is a Gaussian in x and the FT of $\Psi(x,t)$, gives $\Phi(k,t)$, for which $|\Phi(k,t)|^2$ is a Gaussian in k.

center of wavepacket follows Newton's Laws

extra stuff: spreading

interference

tunneling

Today: (improved and embellished repeat of material in pages 3-4 through 3-11

- 1. Infer Δk by comparing g(k) to G(x; $x_0, \Delta x$)
- $g(k) = |g(k)| e^{i\alpha(k)}$ for k near k_0 2.
- $\frac{d\alpha}{dk}\Big|_{x=0} \equiv -x_0$ STATIONARY PHASE 3.
- 4. moving, spreading wavepacket
- how is it possible that the center of the wavepacket moves at a different velocity than its center k-component

1

1. Here is a normalized Gaussian (see Gaussian Handout)

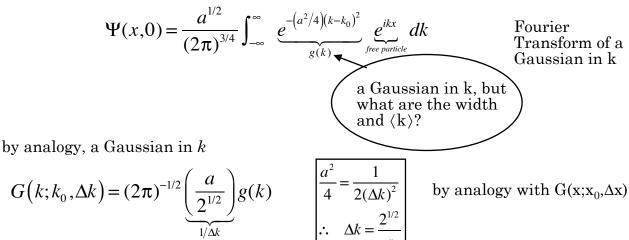
$$G(x; x_0, \Delta x) = (2\pi)^{-1/2} \frac{1}{\Delta x} e^{-(x-x_0)^2} / \left[2(\Delta x)^2 \right]$$

$$\left[\text{normalized } \int_{-\infty}^{\infty} G(x; x_0, \Delta x) dx = 1 \right]$$

$$\text{center } \langle x \rangle = x_0$$

$$\text{width = standard deviation} \qquad \Delta x \equiv \left[\langle x^2 \rangle - \langle x \rangle^2 \right]^{1/2}$$
by construction

Now compare this special form to



So casual inspection of this form of $\Psi(x,0)$ gives us $\langle k \rangle$ and Δk . Not quite so easy to get $\langle x \rangle$ and Δx .

If we actually carry out the F.T. specified in the definition of $\Psi(x,0)$ above, we get

$$\Psi(x,0) = \left(\frac{2}{\pi a^{2}}\right)^{1/4} e^{ik_{0}x} e^{-x^{2}/a^{2}} \qquad \frac{1}{2(\Delta x)^{2}} = \frac{1}{a^{2}}$$

$$\langle x \rangle = x_{0} = 0 \qquad \Delta x = a/2^{1/2}$$

$$\Delta x = 2^{-1/2} a, \quad \text{previously } \langle k \rangle = k_{0}, \Delta k = \frac{2^{1/2}}{a};$$

But the square of a Gaussian is a Gaussian and the Δx or Δk of the squared Gaussian is a factor of $2^{-1/2}$ smaller than the original Gaussian.

$$\Delta x$$
 for $\Psi(x,0)$ is $2^{-1/2}a$, Δx for $|\Psi(x,0)|^2$ is $\frac{a}{2}$.

$$\Delta k$$
 for $\Phi(k,0)$ is $\frac{2^{1/2}}{a}$, Δk for $|\Phi(k,0)|^2$ is $\frac{1}{a}$.

For the squared Gaussian: a

$$\Delta x \Delta k = \frac{a}{2} \frac{1}{a} = \frac{1}{2}$$

This is a very special Gaussian wavepacket

* minimum uncertainty

*
$$x_0 = 0$$

3. What about more general Gaussian wavepackets?

g(k) is a <u>complex function</u> of k <u>sharply peaked</u> near $k = k_0$

$$g(k)=|g(k)e^{i\alpha(k)}$$
 amplitude, argument form

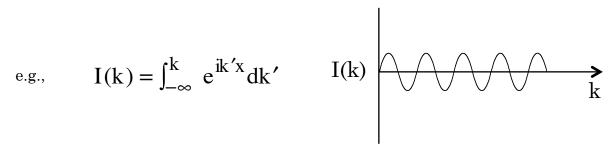
If |g(k)| is sharply peaked near $k = k_0$, then the *only relevant part* of α (k) is the part for k near k_0

Expand
$$\alpha(\mathbf{k}) = \underbrace{\alpha(\mathbf{k}_0)}_{\alpha_0} + (k - k_0) \frac{d\alpha}{dk} \Big|_{k=k_0} +$$
 higher terms neglected

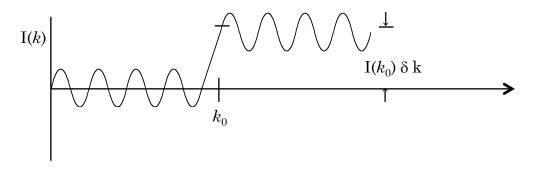
$$\Psi(x,0) = \frac{a^{1/2}}{(2\pi)^{3/4}} \int_{-\infty}^{\infty} \underbrace{|g(k)| e^{i\alpha(k)} e^{ikx}}_{|g(k)| e^{i\alpha_0} e^{i\left[(k-k_0)\frac{d\alpha}{dk}\right]_{k=k_0} + kx}} dk$$

We want to "cook" $\Psi(x,0)$ so that it is localized near $x=x_0$. In order for this to happen, the factor $\left[\frac{d\alpha}{dk}\right]_{k=0}^{k=0}$, must be independent of k near $k=k_0$. Stationary Phase!

How does the integral of a wiggly function accumulate? All of the "accumulation" to the $\int_{-\infty}^{\infty}$ value occurs near the "stationary phase points".



remains near zero, but if the phase factor stops wiggling near $k = k_0$



where δk is the range of k over which the phase factor changes by π .

So, arrange for the phase factor to become stationary near $k=k_0$. Expand $\alpha(k)$ in a power series and keep only the first term in the expansion:

$$0 = \frac{d}{dk} \left[(k - k_0) \frac{d\alpha}{dk} + kx \right]$$

$$0 = \frac{d\alpha}{dk} + x$$
 satisfied if
$$\frac{d\alpha}{dk}\Big|_{k=k_0} \equiv -x_0$$
 The phase is stationary near $x = x_0$

Thus

$$\Psi(x,0) = \frac{a^{1/2}}{(2\pi)^{3/4}} e^{i\alpha_0} \int_{-\infty}^{\infty} \underbrace{e^{-\left(a^2/4\right)\left(k-k_0\right)^2}}_{|g(k)|} \underbrace{e^{-i(k-k_0)x_0} e^{ikx}}_{e^{ik(x-x_0)} e^{ik_0x_0}} dk$$
(insertion of $e^{-i(k-k_0)x_0}$ phase factor to cause the wavepacket to be centered at x_0 .)
$$\delta(x-x_0)$$
 shifts the center of Ψ to any desired value of x_0

4. Now put in time-dependence by adding

$$e^{-i\omega_k t}$$
 factor $\omega_k = \frac{E_k}{\hbar} = \left(\frac{\hbar^2 k^2}{2m}\right) \frac{1}{\hbar}$ $\omega_k = \frac{\hbar k^2}{2m}$

$$\Psi(x,t) = \frac{a^{1/2}}{(2\pi)^{3/4}} \int_{-\infty}^{\infty} \left| g(k) \right| e^{-i(k-k_0)x_0} \underbrace{e^{ikx}}_{\text{eigenstate of free particle H}} dk$$

This FT is evaluated and simplified in CTDL, page 64

$$|\Psi(x,t)|^2 = \left(\frac{2}{\pi a^2}\right)^{1/2} \underbrace{\left(1 + \frac{4\hbar^2 t^2}{m^2 a^4}\right)}_{\text{time dependent normalization}} \exp - \underbrace{\left[\frac{2a^2\left(x - \frac{\hbar k_0}{m}t\right)^2}{a^4 + \frac{4\hbar^2 t^2}{m^2}}\right]}_{\text{Gaussian with time dependent width and center position}$$

Maximum of Gaussian occurs when numerator of exp -[] is 0.

MOTION

$$0 = x - \frac{\hbar k_0}{m}t \qquad x_0(t) = \frac{\hbar k_0}{m}t \quad \text{(center of moving wavepacket is at}$$

$$y_0 = \frac{d}{m}x_0(t) = \frac{\hbar k_0}{m} - \frac{p_0}{m} - y_0$$

 $v_G = \frac{d}{dt}x_0(t) = \frac{\hbar k_0}{m} = \frac{p_0}{m} = v_{classical}$

velocity of center of Gaussian

This is $2 \times$ larger than v_{ϕ} (the phase velocity). Classically we expect a free particle to move at constant $v = \frac{p}{m}$

WIDTH:

compare coefficient of $(x-x_0(t))^2$ in exp-[] to standard $G(x;x_0,\Delta x)$ in handout

$$\Delta x = \left[\frac{a^4 + 4\hbar^2 t^2 / m^2}{4a^2} \right]^{1/2} \underset{\text{limit}}{\approx} \frac{a}{2} + \underbrace{\frac{\hbar t}{ma}}_{\text{width increases linearly in t at long time (quadratically at early time).}}_{\text{time}}$$

$$\frac{1}{2(\Delta x)^2} = \frac{1}{a^4 + \frac{4\hbar^2 t^2}{m^2}}$$

 $\langle x \rangle$ and Δx are time-dependent, but what about $\langle k \rangle$ and Δk ?

Recall original definition of $\Psi(x,0)$ (page 4-2), where $\Psi(x,0)$ is written as the FT of a Gaussian in k

$$g(k,t) = e^{-i\omega_k t} g(k,0)$$

We know free particle must have time independent k_0 and Δk (because there are no forces acting on the w.p. — divide w.p. into Δk wide slices)

$$\Delta x \Delta k = \frac{1}{2} \left[1 + \frac{4\hbar^2 t^2}{m^2 a^4} \right]^{1/2}$$
 minimum uncertainty at t = 0 (and linearly increasing at long t).

For free particle, build w.p. with any desired x_0 , k_0 , Δk starting from

1.
$$\Psi(x,t) = \int_{-\infty}^{\infty} g(k)e^{ikx}e^{-i\omega_k t}dk$$
 and $\omega_k = \frac{\hbar k^2}{2m}$

2. find
$$x_0$$
 from $-\frac{d\alpha}{dk}\Big|_{k=k_0}$

3.
$$x_0(t) = x_0 + v_G t$$
 $v_G = \frac{\hbar k_0}{m}$

4.
$$\Delta x = \frac{a}{2} \left[1 + \frac{4\hbar^2 t^2}{m^2 a^4} \right]^{1/2}$$

5. If we want a value of Δx other than a/2 at t = 0, replace x by $x' = x + \delta$ such that when the center of w.p. reaches x_0 at t = 0 it has the desired width.

Could have started with
$$\overline{\Psi}(k,0) = \int_{-\infty}^{\infty} \overline{g}(x) \underbrace{e^{-ikx}}_{\text{Gaussian in x}} dx$$

and then encoded k_0 in $\overline{g}(x)$ thru $\frac{d\alpha}{dx}\Big|_{x=x_0} = +k_0$

where $\alpha(x)$ is the argument of $\overline{g}(x) = |\overline{g}(x)| e^{i\alpha(x)}$

For next class read C-TDL pages 103-107, 1468-1476.

MIT OpenCourseWare https://ocw.mit.edu/

5.73 Quantum Mechanics I Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.