5.73

Quiz 8

1.

$$
\begin{aligned}
\int_{x_{-}(E)}^{x_{+}(E)} & p_{E}\left(x^{\prime}\right) d x^{\prime}=\frac{h}{2}(n+1 / 2) \\
& p_{E}(x)=[2 m(E-V(x))]^{1 / 2}
\end{aligned}
$$

Even though WKB cannot be valid for a potential of the form

$$
\begin{array}{ll}
V=0 & |\mathrm{x}| \geq \mathrm{L} / 2 \\
V=-V_{0} & |\mathrm{x}|<\mathrm{L} / 2
\end{array}
$$

A. Evaluate the quantization integral at $E=0$ and determine the number of bound levels, $n_{\text {max }}$, in the potential.
B. Calculate $\frac{d n_{\max }}{d L}$.
C. Calculate $\frac{d n_{\max }}{d V_{0}}$.
D. Which leads to a larger increase in $n_{\max }$, a 10% increase in L or a 10% increase in V_{0} ?
E. Consider the "bifurcated potential": V = 0 $|x|>20 \mathrm{~L}$
$\mathrm{V}=0 \quad|x|<19.5 \mathrm{~L}$
$\mathrm{V}=-\mathrm{V} . \quad 19.5 \mathrm{~L} \leq|x| \leq 20 \mathrm{~L}$
Without doing any new calculations but keeping the result of part A clearly in mind, compare the number of bound levels in the bifurcated potential to those in the original finite square well that is the subject of part A.

MIT OpenCourseWare
https://ocw.mit.edu/

5.73 Quantum Mechanics I

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

