
 

 

 

 
    
  

 

   

  

 
  

 
 

5.73 Lecture #33 33 - 1 

L-S Terms via L2, S2 and Projection 

LAST TIME: 

* method of ML, MS boxes. [For 3L states, cross out boxes starting from 
both (ML=L, MS=1) and (ML=L, MS=0).] 

* there must be a complete (2L + 1)(2S + 1) dimensionality for each L-S 
term [# of boxes] 

* nℓ2 pattern 
* (nℓ)2 n'ℓ' shortcut 
* method of ladders plus orthogonality 

TODAY: 

L2, S2 method to obtain |LMLSMS〉, especially for the ML,MS boxes in which the 
method of ladders plus orthogonality is most inconvenient: e.g, ML = 0, 
MS = 0 

* L2 → L+L– only for ML = 0 block. Every L–S term in the 
configuration is represented in this most evil block. 

* set up and diagonalize S2 — easy — by forming ± linear 
combinations 
(singlet and triplet) 
αβ – βα αβ + βα 

* transform L2 to singlet, triplet basis using the transformation that 
diagonalizes S2 (block diagonalization), then complete the 
diagonalization of L2 by knowing (from crossing out boxes method) 
the L2 eigenvalues: L(L + 1) 

other, strong spin-orbit basis sets 

Modern calculations use projection operators: designed to project away all 
unwanted parts of ψ yet preserve normalization. 
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5.73 Lecture #33 33 - 2 
Look at the ML = 0, MS = 0 block of f2 and construct all L – S basis states. All 
extant L-S terms of f2 are represented once in the ML = MS = 0 block. Never try 
to get to this block by ladders and orthogonality! 

ψ1 = 3α − 3β 

ψ 2 = 3β − 3α 

ψ 3 = 2α − 2β This is for f 2. Do d2 in lecture 

ψ 4 = 2β − 2α 

ψ 5 = 1α −1β 

ψ 6 = 1β −1α 

ψ 7 = 0α 0β 

Exploit cute trick that works especially well in the ML = 0, MS = 0 
block because many otherwise awful terms vanish. 

L2 = L2 
z + 

2
1 (L+L− + L−L+ ) = L2 

z + 
2
1 (L+L− + L+L− − [L+ ,L− ]) 

[L+ ,L− ] = 2!L z 

L2 = L2 
z − !L z + L+L− (same as L2 = L2 

z + !L z + L−L+ ) 
nondiagonaldiagonal but 

vanishes in 
ML = 0 

So for the ML = 0 block only, can replace L2 by L+L– (or L–L+) and, 
for MS = 0 only, replace S2 by S+S– (or S–S+). 
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5.73 Lecture #33 33 - 3 
For f2: 

S2 3α − 3β = S+S – 3α − 3β = S+ 
3β − 3β = 3α − 3β + 3β − 3α 

61/2 L2 3α − 3β = L 3α − 3β = L+ 
2α − 3β = +L− 

]1/2 ⎤ignore 61/2 ⎡[12 − 6]1/2 
3α − 3β +[12 − 6 2α − 2β⎣ ⎦factors 

of "2 = 6 ⎡⎣ 3α − 3β + 2α − 2β ⎤⎦ 
etc. 

S2ψ1 = ψ1 + ψ 2 L2ψ1 = 6ψ 1 + 6ψ 3 

ψ 2 = 

ψ1 = 3α − 3β 

S2ψ 2 = ψ1 + ψ 2 L2ψ 2 = 6ψ 2 + 6ψ 4 

ψ 3 = 

3β − 3α 

2α − 2β S2ψ 3 = ψ3 + ψ 4 L2ψ 3 = 6ψ1 + 16ψ 3 + 10ψ 5 

ψ 4 = 2β − 2α S2ψ 4 = ψ 3 + ψ 4 L2ψ 4 = 6ψ 2 + 16ψ 4 + 10ψ 6 

ψ 5 = 1α − 1β S2ψ 5 = ψ 5 + ψ6 L2ψ 5 = 10ψ 3 + 22ψ 5 + 12ψ7 

ψ 6 = 1β − 1α S2ψ 6 = ψ 5 + ψ 6 L2ψ 6 = 10ψ 4 + 22ψ 6 − 12ψ 7 

ψ 7 = 0α − 0β S2ψ 7 = 0 L2ψ 7 = 12ψ 5 − 12ψ6 + 24ψ 7 

all easy require a bit more work 

Now we know, for 2e–, S2 can only have 2"2 and 0"2 eigenvalues (triplet 
and singlet) 

diagonalize S2 by inspection 

= 2−1/ 2 ψ1 + ψ 2 = 2−1/2 ψ1 −ψ 2t  : αβ + βα ψ1t ( ) ψ1s ( ) 
s  : αβ − βα 

= 2−1/ 2 ψ 3 + ψ 4 = 2−1/2 ψ 3 −ψ 4ψ 2t ( ) ψ 2s ( ) 
= 2−1/ 2 ψ5 + ψ 6 = 2−1/ 2 ψ 5 −ψ6ψ 3t ( ) ψ3s ( ) 

= → This also hasψ 4s ψ 7 
αβ–βα form 
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S2 = h2

5.73 Lecture #33 33 - 4 
Confirm that these functions diagonalize S2 and give correct values 
of diagonal elements. Also, they give orthogonality for singlets with 
triplets. 

1S2 S2a diagonal element: = (ψ1 + ψ 2 ) (ψ1 + ψ 2 )ψ1t ψ1t 2 
1 
!2= = 

1 
!2 (2 + 2) = 2!2(ψ1 + ψ 2 )(2ψ1 + 2ψ 2 )2 2 

1S2 S2an off-diagonal element: = (ψ1 − ψ 2 )(ψ1 + ψ 2 )ψ1t ψ1s 2 
1 
!2= (ψ1 + ψ 2 )(ψ1 + ψ 2 − ψ1 − ψ 2 ) = 0 as expected 

2 
S2also = 0ψ1s ψ1s 

2 1t⎛ ⎞S2 = "2 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜⎝ 

2 ⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟⎠ 

2t 
3t 
1s 
2s 
3s 
4s 

2 0 
0 

0 0 

0 

0 

What does L2 look like when expressed in the basis set that diagonalizes 
S2? 

= 2−1/2 !2L2ψ1t ⎡⎣6ψ1 + 6ψ3 + 6ψ 2 + 6ψ 4 ⎤⎦ 

L2 = 
1 
!2[6 + 6] = 6!2ψ1t ψ1t 2 

NONLECTURE 
1L2 !2= = 

1 
!2 ⎡⎣6 + 6⎤⎦ = 6!26ψ1 + 6ψ3 + 6ψ 2 + 6ψ 4ψ3 + ψ 4ψ 2t ψ1t 2 2 

1 
!2 ⎡ ⎤L2 L2= ψ3 + ψ 4 ψ3 + ψ 4ψ 2t ψ 2t ⎦2 ⎣ 

1 
!2= 6ψ1 +16ψ3 +10ψ5 + 6ψ 2 +16ψ 4 +10ψ6ψ3 + ψ 42 

1 = !2 (16 +16) = 16!2 
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L2 = h2

L2 3HML = 0,MS = 0 = h230 3H 00

5.73 Lecture #33 33 - 5 

L2 = "2 ⎛6 6 0 

6 16 10 

0 10 22 

⎞ 1t0 ⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟
⎟⎠ 

2t 
3t 
1s 
2s 
3s 
4s 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜⎝ 

6 6 0 0 

6 16 10 0 

0 10 22 24 ⋅ 2−1/ 2 

0 0 24 ⋅2−1/ 2 24
0 

These 2 matrices are easier to diagonalize than the full 7 × 7 matrix, especially 
because we know the eigenvalues in advance! 

But our goal is actually the eigenvectors not the eigenvalues: 

3HTRIPLETS L2 3H M = 0,M = 0 = !230 00 
L S 

6 6 0 
6 16 10 
0 10 22 

⎛ ⎛⎞ a ⎛⎞ a⎞ 
= 30⎜ 

⎜
⎝ 

⎜ 
⎜
⎝ 

⎜ 
⎜
⎝ 
⎟ 
⎟
⎠ 
b 

c 
⎟ 
⎟
⎠ 

b⎟ 
⎟
⎠c 

(L2 ) eigenvector equation 

246a + 6b + 0c = 30a → b = a = 4a a = b / 4 
6 

6a +16b +10c = 30b 
80a +10b + 22c = 30c → b = c

10 
]1/ 2 

1 = [a2 + b2 + c2 

a = 42−1/ 2 

)1/ 2 b = (8 / 21 

)1/2c = (25 / 42 
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5.73 Lecture #33 33 - 6 
= 42−1/2 ψ1t 

3H 00 + (8 / 21)1/2 ψ 2t + (25 / 42)1/2 ψ3t 

Similarly, 

= 3−1/2 3F 00 (ψ1t + ψ 2t − ψ3t ) 
−1/2 1/2 

⎛ 9 ⎞ ⎛ 2⎞ −14−1/2 ψ3t 
3P 00 = −⎝⎜ ⎠⎟ ψ1t + ⎝⎜ ⎠⎟ ψ 2t14 7

Note that each ψnt basis state gets completely “used up” and all eigenvectors are 
normalized and mutually orthogonal. You should verify both “used up” and 
orthogonality. 

Nonlecture: Singlets 

L2 1I 00 = !242 1I 00 

6 6 0 0⎛ ⎛⎞ ⎛⎞ ⎞a a
⎜ 
⎜ 
⎜ 
⎜⎝ 

6 16 10 0 
24 i2−1/2 0 10 22 

24 i2−1/2 0 0 24 

⎟ 
⎟ 
⎟ 
⎟⎠ 

⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

= 42 
⎜ 
⎜ 
⎜
⎜⎝ 

⎟ 
⎟ 
⎟
⎟⎠ 

b 
c 
d 

b 
c 
d 

a = b / 6 6a + 6b = 42a 6b = 36a ⇒ 5 c = b6a +16b + 10c = 42b 6a + 10c = 26b 10c = 25b 2 
10 

24 ⋅ 2−1/2 24 ⋅ 2−1/2 d = bc + 24d = 42d c = 18d 3⋅ 21/2 

⎡ 1 25 50 ⎤
1/2 

b = (6 / 77)1/2 
normalization: 1 = b + 1+ +

⎣⎢36 4 9 ⎦⎥ 

1/2 1/2 1/2 1/2 
1 ⎛ 6 ⎞ ⎛ 6 ⎞ 5 ⎛ 6 ⎞ 10 ⎛ 3 ⎞1I 00 = ψ + ψ + ψ + ψ⎝⎜ ⎠⎟ 1s ⎝⎜ ⎠⎟ 2s ⎝⎜ ⎠⎟ 3s ⎝⎜ ⎠⎟ 4s6 77 77 2 77 3 77 

A lot of algebra skipped here: 
1/2 1/2 1/2 1/2 

⎡ 9 ⎤ ⎡ 49 ⎤ ⎛ 1 ⎞ ⎛ 18 ⎞1G 00 = + + −ψ1s ψ 2s ⎝⎜ ⎠⎟ ψ3s ⎝⎜ ⎠⎟ ψ 4s⎣⎢77 ⎦⎥ ⎣⎢77 ⎦⎥ 77 77 
1/2 1/2 1/2 

⎛ 25⎞ ⎛ 9 ⎞ ⎛ 8 ⎞1D 00 = −⎝⎜ ⎠⎟ ψ1s + 0ψ 2s + ⎝⎜ ⎠⎟ ψ3s − ⎝⎜ ⎠⎟ ψ 4s42 42 42 
1/2 1/2 1/2 1/2 

⎛ 2⎞ ⎛ 2⎞ ⎛ 2⎞ ⎛ 1⎞1S 00 = − ψ1s + ψ 2s − ψ3s + ψ 4s⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟7 7 7 7 
updated August 27, 2020 @ 11:34 AM 
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5.73 Lecture #33 33 - 7 

Again note that each ψns is used up. You should verify orthogonality! 

Two opposite strategies: 
1. ladder down from extreme ML, MS 
2. L2 + S2 matrices are large but easy to write out for ML = 0 and MS = 0 

ONLY — could then ladder up from any L2, S2 eigenfunction (no need 
to use orthogonality because every L–S state is present in the ML = 0, 
MS = 0 block). 

Before going to Projection Operators, look briefly at the problems 
associated with deriving 2 other kinds of basis states. 

mj “coupled” orbitals — important for strong spin-orbit 
limit with HEAVY ATOMS. 
(HSO is diagonal in |jω〉 and in |JMJLS〉)jωℓs ζ ≫ energy separations between L-S terms nℓ 

(all ζ are ≥ 0)nℓ 

JMJ LS coupled many-electron L-S-J states. 
Again — useful in strong spin-orbit limit 

←3- j or ladders LMLSMSJMJ LS ⎯⎯ ⎯→ 

J2 ladders and 
(ladders are L2 and S2 and 

almost 3-j in 
useless) multiple 

steps 

(n1ℓ1m s1m )( )…⎯⎯ ⎯→(n1 j1ω1ℓ1s1 )… ℓ1 s1 
←3- j or ladders 

to get here, must go long way around or 
use projection operators. 
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5.73 Lecture #33 33 - 8 
NONLECTURE 

BOX METHOD FOR |jωℓs〉 orbital basis: (nf)2 example 
No need to specify ℓ and s. 

Standard Order: (7/2 7/2), (7/2 5/2), (7/2 3/2), (7/2 1/2), (7/2, -1/2), (7/2, -3/2), 

14 functions 

# MJ 

(0) 7 7777 
(2) 6 7775 
(3) 5 7773 
(6) 4 7771 

(7/2 -5/2), (7/2 -7/2), (5/2 5/2), (5/2 3/2), (5/2 1/2), (5/2 -1/2), 
(5/2 -3/2), (5/2 -5/2) 

List only Slater determinants with MJ ≥ 0.  
Suppress the /2’s 

j1ω1 j2ω2 

7755 
7753 7555 
7751 7573 7553 7355 5553 

(7) 3 777 − 1 775 − 1 7571 7551 7353 5551 7155 
(10) 2 777 − 3 775 − 3 777 − 1 775 − 1 7371 7351 7153 7 − 155 

555 − 1 5351 
(11) 1 777 − 5 775 − 5 757 − 3 755 − 3 737 − 1 735 −1 7151 7 − 153 

7 − 355 555 − 3 535 − 1 
(13) 0 777 − 7 757 − 5 755 − 5 737 − 3 735 − 3 717 −1 715 − 1 7 − 171 

7 − 151 7 −373 7 − 353 7 − 555 555 − 5 535 − 3 515 − 1 

AWFUL! The number of Slater determinants increases in steps larger than 1 
as you move down from MJ = J. Ladders plus orthogonality cannot 
work. 

Worst possible one for ladders plusWork in the 13 member MJ = 0 block 
orthogonality. 

J2 = J2 − !J + J J [Hopeless to attempt to set up L2 and S2 matrices!] Why? 
z z + − 

diagonal 

Dimension of Various J blocks: J = 6 Dimension = 2 
5 1 
4 3 
3 1 
2 3 
1 1 
0 2 

All blocks are manageable! Ladder up from MJ = 0. 
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5.73 Lecture #33 33 - 9 
coupled basis sets are convenient for L ∙ S and ℓi∙ si (spin-orbit) 

uncoupled basis sets are convenient for (Lz + 2Sz) (Zeeman) 

Either of the two many-electron basis sets is OK for e . 
ij The big problem for e2/rij is that it has 

r 

many off-diagonal matrix elements in the Slater 
determinantal basis set.  These are extremely tedious to 
evaluate. The solution to this is the 
“Slater Sum Rule” method. 
It is based on the fact that the trace of a matrix is equal 
to the sum of its eigenvalues. This is true regardless of 
what representation is used to express the matrix. 

SUM RULE METHOD: Diagonal matrix elements of 
e2 rij in the Slater 
determinantal basis set 

NEXT TIME 
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5.73 Lecture #33 33 - 10 
NONLECTURE: Projection Operators 

This is an alternative method to set up |LMLSMS〉 or ⎜JLSMJ〉 basis sets in terms 
of either nℓmℓsms or njωℓs spin-orbital Slater basis sets. 

1. Work out L2 and S2 matrices for nℓmℓsms (or J2 for njωℓs).  These matrices are 
block diagonal in ML,MS (or MJ). 

2. Construct an operator which, when applied to an arbitrary function, annihilates 
the undesired part of that function. 

e.g. annihilate L″ by [ L̂2 − !2L′′(L′′ + 1)]Ψ 

3. Modify the above operator so that it preserves the amplitude of the L′ 
component of ψ. 

e.g. annihilate L″ , and preserve amplitude of L′ 

⎡ L̂2 − !2 L′′( L′′ +1) ⎤ 
⎢ ⎥Ψ ≡ PΨ 
⎣ !2 [ L′( L′ +1)− L′′(L′′ +1)]⎦ 

show how this works by applying it to Ψ = aψ + bψL′ L′′ 
L′( L′ + 1) − L′′(L ′′ + 1) L′′( L′′ +1) − L′′( L′′ +1)

P(aψ L ′ + bψ L′ ′) = a )ψ L′ + b ) ψ L′′ L′( L′ + 1) − L′′(L ′′ + 1 L′( L′ + 1) − L′′( L′′ + 1 
= aψ + 0ψL′ L′ ′ 

4. Now recognize that one can build a projection operator that annihilates all of 
the undesired L″ components by taking a product of operators like that in #3, 
one for each L″ . 

L̂2 − !2 L′′( L′′ +1)=PL′ ∏ 
all L′′≠L′ !

2 L′( L′ +1) − !2 L′′( L′′ +1) 
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5.73 Lecture #33 33 - 11 

5. Recognize that PL′ψ = aL′ψL′, which is not normalized, because aL′ is the 
amplitude of ψL′ in ψ. Get a normalized ψL′ by recognizing that ψ L ′ Ψ = aL′ 

ψ ′L = 
Ρ ′L Ψ 

ψ ′L Ψ 

This method is useful for dealing with |JMJLS〉 in the |jωℓs〉 orbital basis because 
there is no simple way of block diagonalizing J2 in terms of L2 and S2. It is only 
possible to block diagonalize J2 in terms of MJ. 

Modern calculations will simply set up the J2,Jz matrix, diagonalize J2, and then 
discover to which eigenvalues of L2 and S2 each J2, Jz basis function belongs. In 
many cases two or more L–S terms will contain L–S–J components which belong 
to the same eigenvalue of J2. 
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